STA 141A course page: Fundamentals of Statistical Data Science

Fall 2025

Instructor: Akira Horiguchi (ahoriguchi@ucdavis.edu)

Lectures: Mondays, Wednesdays and Fridays, 9:00 AM - 9:50 AM, (TLC 1215)

Labs: Run by TAs, (Wellman 115)

  • Section A01: Tuesday, 12:10 PM - 1:00 PM, Kwan Ho Lee (ksjlee@ucdavis.edu)
  • Section A02: Tuesday, 1:10 PM - 2:00 PM, Pascal (Mingqian) Zhang (pazhang@ucdavis.edu)

Office hours:

  Day, time Location
Akira Horiguchi F 10:00-11:00am Physical and Data Sciences Building 0003 (in the basement; ignore the scary signs), Google Map
Kwan Ho Lee M 2:00-3:00pm MSB 1117
Mingqian (Pascal) Zhang T 8:50-9:50am MSB 1117

Syllabus: here

Piazza: See Canvas

Textbooks: Four "main" textbooks and one "supplemental" textbook will be used for the course. They are all freely available online.

Helpful (Optional) Links

Class Schedule

The exam, project, and homework dates are set, but the lecture topics are subject to change.

Week Day of Lecture Topics Slides Additional references Homework Discussion
1 Sep 24 (W) 1 (Class overview, basic R) part 1 part 2 IR HW 1 files pdf qmd  
  Sep 26 (F) 2 (Vectors, matrices, arrays, lists, data frames) html IR    
2 Sep 29 (M) 2 (Functions, loops, apply, conditional execution) html IR   Sep 30: Disc 1
  Oct 1 (W) Discuss project, 3 (Explore data: import) html R4DS2, Ch3 HW 1 due 11:59pm HW 2 files pdf qmd  
  Oct 3 (F) 3 (Explore data: subset, inspect, reshape) (see above) R4DS2, Ch3,5    
3 Oct 6 (M) 3 (Explore data: transforming) html R4DS2, Ch12-13   Oct 7: Disc 2
  Oct 8 (W) 3 (Explore data: transforming) (see above) R4DS2, Ch12-13 HW 2 due 11:59pm  
  Oct 10 (F) Discuss project proposal, 3 (Explore data: EDA) html R4DS2, Ch9-10    
4 Oct 13 (M) 3 (Explore data: joins), 4 (Probability) html pdf R4DS2, Ch16 HW 3 files pdf qmd turkey Oct 14: Disc 3
  Oct 15 (W) 4 (Probability) pdf IP, Ch1,3-5 Project proposal due, 11:59pm  
  Oct 17 (F) 4 (Probability) pdf IP, Ch1,3-5 Project proposal due, 11:59pm  
5 Oct 20 (M) 4 (Probability) pdf IP, Ch1,3-5   Oct 21: Disc 4
  Oct 22 (W) 5 (Overview of statistical learning) pdf ISLR2, Ch1-2 HW 3 due 11:59pm  
  Oct 24 (F) 5 (Overview of statistical learning), review pdf ISLR2, Ch2    
6 Oct 27 (M) Midterm exam 1 (9:00 AM - 9:50 AM)       Oct 28: Disc 5
  Oct 29 (W) 5 (Overview of statistical learning) pdf ISLR2, Ch2 HW 4 files pdf qmd  
  Oct 31 (F) 6 (Cross-validation) pdf ISLR2, Ch5    
7 Nov 3 (M) Discuss project 7 (Linear regression)   ISLR2, Ch3   Nov 4: Disc 6
  Nov 5 (W) 7 (Linear regression)   ISLR2, Ch3 HW 4 due 11:59pm  
  Nov 7 (F) 8 (Classification)   ISLR2, Ch4    
8 Nov 10 (M) 8 (Classification)   ISLR2, Ch4   Nov 11: no disc (Veterans Day holiday)
  Nov 12 (W) 8 (Classification)   ISLR2, Ch4 HW 5 due 11:59pm  
  Nov 14 (F) 8 (Classification)   ISLR2, Ch4    
9 Nov 17 (M) 9 (Unsupervised learning)   ISLR2, Ch12   Nov 18: Disc 7
  Nov 19 (W) 9 (Unsupervised learning)   ISLR2, Ch12 HW 6 due 11:59pm  
  Nov 21 (F) 9 (Unsupervised learning)   ISLR2, Ch12    
10 Nov 24 (M) Midterm exam 2 (9:00 AM - 9:50 AM)       Nov 25: Disc 8
  Nov 26 (W) TBD        
  Nov 28 (F) Thanksgiving Holiday, no class        
11 Dec 1 (M) TBD   ISLR2, Ch8   Dec 2: Disc 9
  Dec 3 (W) TBD        
  Dec 5 (F) TBD        
12 …………… No final exam ………………………………………     Final project due Dec 9, 11:59pm