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Overview

� Probability measure and random variables

� PMF/PDF

� Some distributions

� Expected value

� Variance and covariance

� Conditional probability and independence

The prerequisite for this class is either STA ��� (regression) or STA ��� (ANOVA), so I
expect you have already learned everything in this slide deck.

If you need a refresher on probability, you can refer to this free textbook:
https://www.probabilitycourse.com/
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Probability measure and random variables



Probability measure - Motivation

Probability is a way to quantify randomness and/or uncertainty.
e.g., coin flips, dice rolls, stocks, weather.
Rules of probability should be intuitive and self-consistent.
Self-consistent: the rules shouldn’t lead to contradictions.
Thus these rules must be constructed in a certain way.
Suppose we want to assign a probability to each event in a set of possible events.
We would like, at the very least:
�. each probability to be a value between � and � (inclusive)
�. the probability assigned to the full set of events to be �
�. the probability assigned to the empty set to be �

We need more restrictions to ensure self-consistency.
The following definition will lead to intuitive and self-consistent rules of probability.
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Probability measure - Definition

Definition �: Probabilty measure P(�)
For a nonempty set ⌦, the set function P⇥⌦ � [�, �] is a probability measure, if

P(⌦) = �,
for any pairwise disjoints sets A�,A�, � � � N ⌦ (i.e. Ai = Aj = o for all i, j with i j j),
holds:

P⇤⌫
i"N
Ai = =

i"N
P(Ai). (�)

This definition fulfills the three properties from the previous slide:
P(⌦) = �: the probability of the biggest possible set is equal to �.
Property (�) allows us to add probabilities of disjoint sets.
Z Disjoint means having no shared elements.
Z (Property (�) is called the countable additivity property.)
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Probability measure - Properties

Definition � implies the following additional properties:

Properties of P(�)
With o being the empty set, with some sets A,B L ⌦, and with Ac = ⌦\A denoting the
complement of A, holds,
i) P(o) = �;
ii) P(A < B) = P(A) + P(B) if A = B = o;

iii) P(Ac) = � � P(A);
iv) P(B \ A) = P(B) � P(A) if A N B;
v) P(A) & P(B) if A N B.

� ��
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1 = P(c) = p(aud) = P(r) + p(q) = 1 + P(q)

-> follows from countable additivity

1 = P(t) = P(A-Ac) = P(A) + PLAY
P(B) = P(Au (B) A)) = P(A) + P(B(A)

=> -
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Random variables - Notion

Probability measures allow us to characterize the "randomness" of events.
But we are often interested in more than just probabilities. For example:
Z the number of heads from three (independent) flips of some coin
Z the sum of the faces after throwing two dice
Z the lifetime of a battery

We call each of these a random variable because they take on di�erent values
based on random events.
The probability that a random variable is a certain value will depend on the
probabilities of individual events.
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Motivation

When doing probability calculations, rather than use probability measures (which are
functions of sets), it is often easier to describe a probability distribution using
functions of single variables
�. PMF/PDF
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PMF/PDF - concept

The idea behind a PMF/PDF is to assign probabilities to the possible values of a
random variable.

The concept is di�erent for discrete and continuous random variables.
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PMF/PDF - discrete and continuous case

A random variable X is discrete if its range is finite or countably infinite.
Examples:
�. number of heads after two coin flips,
�. number of coin flips needed before a heads turns up.

Here probabilities can be assigned to each realizable value. Examples:
�. For {�, �, �} (finite), we can assign probabilities �/�, �/�, and �/�.
�. For N (countably infinite), we can assign probabilities (�/�)k to each k " N.

The probability mass function (PMF) fX of a discrete random variable X assigns
probabilities to each realizable value of X. Examples:
�. fX(�) = �/�, fX(�) = �/�, and fX(�) = �/�.
�. fX(k) = (�/�)k for each k " N.

The PMF at a, fX(a)  P(X = a), is “the probability that X equals a.”
The probability that X lies in a set A can be calculated by

P(X " A) = = =
a"A

fX(a) (�)

Z E.g. for example �, what is the probability that X < �?
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PMF/PDF - discrete and continuous case

A random variable X is continuous if its range is uncountably infinite.
Examples: lifetime of a person, time it takes you to finish the first midterm exam
For any value in the range of a continuous random variable X, the probability that
X is that value must be zero. Why?
Z If uncountably many values are assigned positive probability, the sum of those values

would then be infinity!

For a continuous random variable X, at any value a we have P(X = a) = �.
The probability density function (PDF) fX of a continuous random variable X
describes how likely it is for X to lie a set A of values:

P(X " A) = E
A
fX(s)ds. (�)

Letting A = (a,a + h], we can think of the PDF fX at a value a as
lim
h��+

P(X " A)
h = lim

h��+
P(a < X & a + h)

h
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PMF/PDF - discrete and continuous case

From the properties of probability measures, it follows that any PMF fX of a discrete
random variable X must satisfy both
�. fX(x) ' � for all x, and
�. <all x fX(x) = �.

Similarly, it follows that any PDF fX of a continuous random variable X must satisfy
both
�. fX(x) ' � for all x, and
�. Dall x fX(x)dx = �.
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Some distributions



Discrete case - Uniform distribution

A random variable X with values in a finite set M is uniformly distributed if each
element in M has the same probability:

P(X = k) = �
#M for all k " M

Such distributions occur when all possible outcomes are equally likely.
We write X ⇥ U(M) or X ⇥ Unif(M).
Nine random draws in R:
sample(c(�,�,�,�,�,�), size��, replace�TRUE)
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Discrete case - Bernoulli distribution

A random variable X is Bernoulli distributed with parameter p " (�, �), if P(X = �) = p
and P(X = �) = � � p.

For when our random experiment has only two possible outcomes ("success" and
"failure").
Example: flip a coin with probability p of heads ("success"). Is it heads?
We write X ⇥ Berp or X ⇥ Bern(p).
Nine random draws in R: rbinom(n��, size��, prob��/�)

�� ��

-

mum
=> w L

·Dotor



Discrete case - Binomial distribution

A random variable X is Binomial distributed with parameters n " N and p " (�, �) if
P(X = k) = ⇧nk↵pk(� � p)n�k for all k = �, . . . ,n.

We think of n as the number of experiments and p the success probability. In the
above equation, k is the number of successes.
For measuring the probability of the number of successes of n independent
Bernoulli experiments with parameter p.
Example: flip a coin n times, each flip with probability p of heads ("success"). How
many heads?
We write X ⇥ Binn,p or X ⇥ Bin(n,p).
A random draw in R: rbinom(n��, size��, prob��.��) |� sum()
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Continuous case - Uniform distribution

A random variable X is uniformly distributed on an interval M = (a,b), with b > a, if the
PDF has the form

fX(x) = �
b � a for all x " (a,b).

Such distributions occur when all (uncountably many) possible outcomes are
equally likely.
The interval M can also instead be [a,b), or (a,b], or [a,b].
Here we also write X ⇥ U(M) or X ⇥ Unif(M).
Nine random draws in (�, �) in R: runif(n��, min��, max��)
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Continuous case - Normal distrobution

A random variable X is normally distributed with parameters µ " R and �� > �, if the
PDF has the form

fX(x) = �
�
”
�⇡
e�

�
� ( x�µ� )� for all x " R.

This distribution appears often in this class, in future classes, and in life!
We write X ⇥ N(µ,��). We also call it Gaussian distributed.
Thereby, E(X) = µ (location parameter), and Var(X) = �� (squared scale).
If X ⇥ N(�, �), the distribution of X is said to be standard normal.
Nine random draws in R: rnorm(n��, mean��, sd��)

PDF of X ⇥ N(�, �), Y ⇥ N(�, �), Z ⇥ N(�, �)
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Expected value - Introduction

The expected value of a random variable is the weighted average of all of its values,
where the weights are the probabilities that these values occur.

Definition �: Expected value E(�)
Let X be a random variable. Then, the expected value of X is in the discrete case and in
the continuous case (given the PDF fX) is defined as

E(X) = =
all k

P(X = k) � k resp. E(X) = E
all s

fX(s) � sds . (�)

The expected value of a random variable sometimes does not exist if, for example,
the random variable is continuous and the weights are "large" for large values of
the random variable (e.g. E(X) = Dô

�
�
s� � sds = ô).
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Expected value - Calculating expected value by hand

Calculate E(X) with PDF fY(a) = �
�a

� where a " [�, �]

�� ��
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Expected value - Calculation tools

Properties of E(�)
Let c " R be a constant, and let X, Y be random variables for which their expected
values E(X) and E(Y) exists. Then, the following rules hold.
i) E(c) = c;
ii) E(cX) = cE(X);
iii) E(X + Y) = E(X) + E(Y).
Example with c = �, E(X) = �, E(Y) = �

�� ��

E(cX) = cE(X) = 2 . 1 = 2

E(X + Y) = E(X) + E(Y) = 1 + 5 = 6

= (x +c = E(X) + E() = E(x) + c = 1 +2 = 3

E(cY + x) = E(Y) + E(X) =
cE(Y) + E(X) = 2. 5 + 1 = 11



Variance and covariance



Variance - Introduction

Heuristics
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Variance - Definition and properties

The variance of a random variable is the expected squared deviation of its values to its
expected value.

Definition �: Variance Var(�)
Let X be a random variable with E(X�) < ô. Then the variance of X is defined as

Var(X)  E[{X � E(X)}�]. (�)

Think of Var(X) as “how much X varies about its mean.” We can deduce:
Var(X) ' �.
Var(X) = �� X is constant.
The variance of X can also be calculated as

Var(X) = E(X�) � (E(X))�. (�)
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Variance - Calculation tools

Properties of Var(�)
Let c " R be a constant, and let X be a random variable with E(X�) < ô. Then
i) Var(c) = �;
ii) Var(X + c) = Var(X);
iii) Var(cX) = c�Var(X);
Recall intuition: Var(X) is “how much X varies about its mean.”
Example with c = �, Var(X) = �, Var(Y) = �.
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Covariance and correlation - Motivation

Expected value and variance help characterize the distribution of a single random
variable X.

Now suppose we want to characterize the relationship between two random variables
X and Y.

A complete characterization requires assigning probabilities to every possible pair
of values that (X, Y) could be.
Simpler characterizations are the covariance and correlation of X and Y.
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Covariance - Introduction

Heuristics
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Covariance - Definition and properties

Definition �: Covariance Cov(�, �)
Let X, Y be random variables with E(X�), E(Y�) < ô. Then the covariance between X and
Y is defined as

Cov(X, Y)  E((X � E(X))(Y � E(Y))) . (�)

The covariance between X and Y can also be calculated as

Cov(X, Y) = E(XY) � E(X)E(Y) . (�)

We say X and Y are uncorrelated if Cov(X, Y) = �. Then X and Y have no linear
relationship, and E(XY) = E(X)E(Y).
Cov(X, Y) > � indicate a positive linear relationship between X and Y.
Cov(X, Y) < � indicate a negative linear relationship between X and Y.
Covariance is symmetric: Cov(X, Y) = Cov(Y, X).
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Correlation coe�cient

Definition �: Correlation coe�cient ⇢(�, �)
Let X, Y be random variables with E(X�), E(Y�) < ô. Then, the correlation coe�cient
between X and Y is defined as, provided Var(X) > � and Var(Y) > �,

⇢(X, Y)  Cov(X, Y)‘
Var(X)‘Var(Y) " [��, �] . (�)

⇢(X, Y) = �� between X and Y is no linear relationship.
⇢(X, Y) = �� (�) � all values of X and Y lie on a line with negative (positive) slope.
If ⇢(X, Y) is close to -� (�), there is a strong negative (positive) linear relationship
between X and Y.
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Variance and covariance - More calculation tools

Properties of Var(�) and Cov(�, �)
Let c " R be a constant, and let X, Y, Z be random variables with E(X�) < ô, E(Y�) < ô,
and E(Z�) < ô. Then
iv) Var(X) = Cov(X, X)
v) Var(X + Y) = Var(X) + Var(Y) + �Cov(X, Y)
vi) Cov(X, Y) = Cov(Y, X)
vii) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z) and Cov(cX, Z) = cCov(X, Z)
(Property vii says Cov(�, �) is linear in its first argument. Because Cov(�, �) is symmetric,
it is also linear in its second argument. Thus we call it bilinear.)

Example with c = �, Var(X) = �, Var(Y) = �, Cov(X, Y) = �/�.
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Conditional probability - Introduction

Heuristics
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Definition and properties

An event is a subset of the sample space ⌦.

Definition �: Conditional probability
For events A,B N ⌦, the conditional probability of A given B is defined by

P(A∂B) = w P(A=B)
P(B) , if P(B) > �,
�, if P(B) = �. (��)

Events A and B are called independent if

P(A = B) = P(A)P(B). (��)

Here knowing B provides no information about A, and vice versa.
Equivalently, events A and B are independent if P(A∂B) = P(A).
Random variables X and Y are called independent if for all sets A,B holds,

P(X " A, Y " B) = P(X " A)P(Y " B). (��)

Independent random variables are uncorrelated.
But uncorrelated random variables are not necessarily independent!
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