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The prerequisite for this class is either STA 108 (regression) or STA 106 (ANOVA), so I
expect you have already learned everything in this slide deck.

If you need a refresher on probability, you can refer to this free textbook:
https://www.probabilitycourse.com/
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Probability measure and random variables



Probability measure - Motivation

Probability is a way to quantify randomness and/or uncertainty.
e.g., coin flips, dice rolls, stocks, weather.
Rules of probability should be intuitive and self-consistent.
Self-consistent: the rules shouldn’t lead to contradictions.
Thus these rules must be constructed in a certain way.
Suppose we want to assign a probability to each event in a set of possible events.
We would like, at the very least:

1. each probability to be a value between 0 and 1 (inclusive)
2. the probability assigned to the full set of events to be 1
3. the probability assigned to the empty set to be 0

We need more restrictions to ensure self-consistency.
The following definition will lead to intuitive and self-consistent rules of probability.
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Probability measure - Definition

Definition 1: Probabilty measure P(⋅)
For a nonempty set Ω, the set function P∶Ω → [0, 1] is a probability measure, if

P(Ω) = 1,
for any pairwise disjoints sets A1,A2, ⋅ ⋅ ⋅ ⊆ Ω (i.e. Ai ∩ Aj = ∅ for all i, j with i ≠ j),
holds:

P(⋃
i∈N

Ai) =∑
i∈N

P(Ai). (1)

This definition fulfills the three properties from the previous slide:
P(Ω) = 1: the probability of the biggest possible set is equal to 1.
Property (1) allows us to add probabilities of disjoint sets.
▶ Disjoint means having no shared elements.
▶ (Property (1) is called the countable additivity property.)
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Probability measure - Properties

Definition 1 implies the following additional properties:

Properties of P(⋅)
With ∅ being the empty set, with some sets A,B ⊂ Ω, and with Ac

= Ω\A denoting the
complement of A, holds,

i) P(∅) = 0;

ii) P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅;

iii) P(Ac) = 1 − P(A);

iv) P(B \ A) = P(B) − P(A) if A ⊆ B;

v) P(A) ≤ P(B) if A ⊆ B.
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Random variables - Notion

Probability measures allow us to characterize the "randomness" of events.
But we are often interested in more than just probabilities. For example:
▶ the number of heads from three (independent) flips of some coin
▶ the sum of the faces after throwing two dice
▶ the lifetime of a battery

We call each of these a random variable because they take on di�erent values
based on random events.
The probability that a random variable is a certain value will depend on the
probabilities of individual events.
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PMF/PDF



Motivation

When doing probability calculations, rather than use probability measures (which are
functions of sets), it is often easier to describe a probability distribution using
functions of single variables

1. PMF/PDF
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PMF/PDF - concept

The idea behind a PMF/PDF is to assign probabilities to the possible values of a
random variable.

The concept is di�erent for discrete and continuous random variables.
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PMF/PDF - discrete and continuous case

A random variable X is discrete if its range is finite or countably infinite.
Examples:

1. number of heads after two coin flips,
2. number of coin flips needed before a heads turns up.

Here probabilities can be assigned to each realizable value. Examples:
1. For {0, 1, 2} (finite), we can assign probabilities 1/4, 1/2, and 1/4.
2. For N (countably infinite), we can assign probabilities (1/2)k to each k ∈ N.

The probability mass function (PMF) fX of a discrete random variable X assigns
probabilities to each realizable value of X. Examples:

1. fX(0) = 1/4, fX(1) = 1/2, and fX(2) = 1/4.
2. fX(k) = (1/2)k for each k ∈ N.

Here fX(a) is “the probability that X equals a.”
The probability P(X ∈ A) that X lies in a set A can be calculated by

P(X ∈ A) =∑
a∈A

fX(a), with fX(a) ≔ P(X = a). (2)

It is common to plot the PMF.
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PMF/PDF - discrete and continuous case

A random variable X is continuous if its range is uncountably infinite.
Examples: the lifetime of a battery, the lifetime of a person,
the time it takes you to finish the first midterm exam
For any value in the range of a continuous random variable X, the probability that
X is that value must be zero. Why?
▶ If uncountably many values are assigned positive probability, the sum of those values

would then be infinity!
For a continuous random variable X, at any value a we have P(X = a) = 0.
The probability density function (PDF) fX of a continuous random variable X
describes how likely it is for X to lie a set A of values:

P(X ∈ A) = ∫
A

fX(s)ds. (3)

It is common to plot the PDF.
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PMF/PDF - discrete and continuous case

From the properties of probability measures, it follows that any PMF fX of a discrete
random variable X must satisfy both

1. fX(x) ≥ 0 for all x, and
2. ∑all x fX(x) = 1.

Similarly, it follows that any PDF fX of a continuous random variable X must satisfy
both

1. fX(x) ≥ 0 for all x, and
2. ∫all x fX(x)dx = 1.
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Some distributions



Discrete case - Uniform distribution

A random variable X with values in a finite set M is uniformly distributed if each
element in M has the same probability:

P(X = k) = 1
#M for all k ∈ M

Such distributions occur when all possible outcomes are equally likely.
We write X ∼ U(M) or X ∼ Unif(M).
Nine random draws in R:
sample(c(1,2,3,4,5,6), size=9, replace=TRUE)
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Discrete case - Bernoulli distribution

A random variable X is Bernoulli distributed with parameter p ∈ (0, 1), if P(X = 1) = p
and P(X = 0) = 1 − p.

For when our random experiment has only two possible outcomes ("success" and
"failure").
Example: flip a coin with probability p of heads ("success"). Is it heads?
We write X ∼ Berp or X ∼ Bern(p).

Nine random draws in R: rbinom(n=9, size=1, prob=1/3)

12 28



Discrete case - Binomial distribution

A random variable X is Binomial distributed with parameters n ∈ N and p ∈ (0, 1) if

P(X = k) = (n
k)pk(1 − p)n−k for all k = 0, . . . ,n.

We think of n as the number of experiments and p the success probability. In the
above equation, k is the number of successes.
For measuring the probability of the number of successes of n independent
Bernoulli experiments with parameter p.
Example: flip a coin n times, each flip with probability p of heads ("success"). How
many heads?
We write X ∼ Binn,p or X ∼ Bin(n,p).

A random draw in R: rbinom(n=3, size=1, prob=0.25) |> sum()
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Continuous case - Uniform distribution

A random variable X is uniformly distributed on an interval M = (a,b), with b > a, if the
PDF has the form

fX(x) = 1
b − a for all x ∈ (a,b).

Such distributions occur when all (uncountably many) possible outcomes are
equally likely.
The interval M can also instead be [a,b), or (a,b], or [a,b].
Here we also write X ∼ U(M) or X ∼ Unif(M).
Nine random draws in (3, 5) in R: runif(n=9, min=3, max=5)
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Continuous case - Normal distrobution

A random variable X is normally distributed with parameters µ ∈ R and σ2
> 0, if the

PDF has the form
fX(x) = 1

σ
√

2π
e−

1
2 (

x−µ
σ

)2
for all x ∈ R.

This distribution appears often in this class, in future classes, and in life!
We write X ∼ N(µ, σ2). We also call it Gaussian distributed.
Thereby, E(X) = µ (location parameter), and Var(X) = σ2 (squared scale).
If X ∼ N(0, 1), the distribution of X is said to be standard normal.
Nine random draws in R: rnorm(n=9, mean=2, sd=1)

PDF of X ∼ N(0, 1), Y ∼ N(2, 1), Z ∼ N(0, 3)
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Expected value



Expected value - Introduction

The expected value of a random variable is the weighted average of all of its values,
where the weights are the probabilities that these values occur.

Definition 2: Expected value E(⋅)
Let X be a random variable. Then, the expected value of X is in the discrete case and in
the continuous case (given the PDF fX) is defined as

E(X) =∑
all k

P(X = k) ⋅ k resp. E(X) = ∫
all s

fX(s) ⋅ s ds . (4)

The expected value of a random variable sometimes does not exist if, for example,
the random variable is continuous and the weights are "large" for large values of
the random variable (e.g. E(X) = ∫∞1 1

s2 ⋅ sds =∞).
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Expected value - Calculating expected value by hand

Calculate E(X) with PDF fY(a) = 3
7 a2 where a ∈ [1, 2]
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Expected value - Calculation tools

Properties of E(⋅)
Let c ∈ R be a constant, and let X, Y be random variables for which their expected
values E(X) and E(Y) exists. Then, the following rules hold.

i) E(c) = c;

ii) E(cX) = cE(X);

iii) E(X + Y) = E(X) + E(Y).

Example with c = 2, E(X) = 1, E(Y) = 5
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Variance and covariance



Variance - Introduction

Heuristics
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Variance - Definition and properties

The variance of a random variable is the expected squared deviation of its values to its
expected value.

Definition 3: Variance Var(⋅)
Let X be a random variable with E(X2) <∞. Then the variance of X is defined as

Var(X) ≔ E[{X − E(X)}2]. (5)

Think of Var(X) as “how much X varies about its mean.” We can deduce:
Var(X) ≥ 0.
Var(X) = 0 ⇒ X is constant.
The variance of X can also be calculated as

Var(X) = E(X2) − (E(X))2
. (6)
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Variance - Calculation tools

Properties of Var(⋅)
Let c ∈ R be a constant, and let X be a random variable with E(X2) <∞. Then

i) Var(c) = 0;

ii) Var(X + c) = Var(X);

iii) Var(cX) = c2Var(X);

Recall intuition: Var(X) is “how much X varies about its mean.”

Example with c = 5, Var(X) = 1, Var(Y) = 2.
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Covariance and correlation - Motivation

Expected value and variance help characterize the distribution of a single random
variable X.

Now suppose we want to characterize the relationship between two random variables
X and Y.

A complete characterization requires assigning probabilities to every possible pair
of values that (X, Y) could be.
Simpler characterizations are the covariance and correlation of X and Y.
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Covariance - Introduction

Heuristics

23 28



Covariance - Definition and properties

Definition 4: Covariance Cov(⋅, ⋅)
Let X, Y be random variables with E(X2), E(Y2) <∞. Then the covariance between X and
Y is defined as

Cov(X, Y) ≔ E((X − E(X))(Y − E(Y))) . (7)

The covariance between X and Y can also be calculated as

Cov(X, Y) = E(XY) − E(X)E(Y) . (8)

We say X and Y are uncorrelated if Cov(X, Y) = 0. Then X and Y have no linear
relationship, and E(XY) = E(X)E(Y).
Cov(X, Y) > 0 indicate a positive linear relationship between X and Y.
Cov(X, Y) < 0 indicate a negative linear relationship between X and Y.
Covariance is symmetric: Cov(X, Y) = Cov(Y, X).
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Correlation coe�cient

Definition 5: Correlation coe�cient ρ(⋅, ⋅)
Let X, Y be random variables with E(X2), E(Y2) <∞. Then, the correlation coe�cient
between X and Y is defined as, provided Var(X) > 0 and Var(Y) > 0,

ρ(X, Y) ≔ Cov(X, Y)√
Var(X)

√
Var(Y)

∈ [−1, 1] . (9)

ρ(X, Y) = 0 ⇒ between X and Y is no linear relationship.
ρ(X, Y) = −1 (1) ⇒ all values of X and Y lie on a line with negative (positive) slope.
If ρ(X, Y) is close to -1 (1), there is a strong negative (positive) linear relationship
between X and Y.
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Variance and covariance - More calculation tools

Properties of Var(⋅) and Cov(⋅, ⋅)
Let c ∈ R be a constant, and let X, Y, Z be random variables with E(X2) <∞, E(Y2) <∞,
and E(Z2) <∞. Then
iv) Var(X) = Cov(X, X)
v) Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

vi) Cov(X, Y) = Cov(Y, X)
vii) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z) and Cov(cX, Z) = cCov(X, Z)

(Property vii says Cov(⋅, ⋅) is linear in its first argument. Because Cov(⋅, ⋅) is symmetric,
it is also linear in its second argument. Thus we call it bilinear.)

Example with c = 5, Var(X) = 1, Var(Y) = 2, Cov(X, Y) = 1/3.
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Conditional probability and independence



Conditional probability - Introduction

Heuristics
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Definition and properties

An event is a subset of the sample space Ω.

Definition 6: Conditional probability
For events A,B ⊆ Ω, the conditional probability of A given B is defined by

P(A∣B) = {
P(A∩B)

P(B) , if P(B) > 0,
0, if P(B) = 0.

(10)

Events A and B are called independent if

P(A ∩ B) = P(A)P(B). (11)

Here knowing B provides no information about A, and vice versa.
Equivalently, events A and B are independent if P(A∣B) = P(A).
Random variables X and Y are called independent if for all sets A,B holds,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B). (12)

Independent random variables are uncorrelated.
But uncorrelated random variables are not necessarily independent!
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