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The prerequisite for this class is either STA 108 (regression) or STA 106 (ANOVA), so |
expect you have already learned everything in this slide deck.

m If you need a refresher on probability, you can refer to this free textbook:
https://www.probabilitycourse.com/



Probability measure and random variables




Probability measure - Motivation

Probability is a way to quantify randomness and/or uncertainty.
m e.g, coin flips, dice rolls, stocks, weather.
Rules of probability should be intuitive and self-consistent.
Self-consistent: the rules shouldn’t lead to contradictions.

Suppose we want to assign a probability to each event in a set of possible events.

We would like, at the very least:
1. each probability to be a value between o0 and 1 (inclusive)
2. the probability assigned to the full set of events to be 1
3. the probability assigned to the empty set to be 0

]
]
m Thus these rules must be constructed in a certain way.
]
]

m We need more restrictions to ensure self-consistency.
The following definition will lead to intuitive and self-consistent rules of probability.



Probability measure - Definition

Definition 1: Probabilty measure P(-)

For a nonempty set £, the set function P: Q — [0,1] is a probability measure, if
m P(Q) =1,
m for any pairwise disjoints sets A, A,, - -- < Q (i.e. A, n A; = @ for all i,j with i # j),

holds:
P([JA) =Y Pa). ()

ieN ieN

This definition fulfills the three properties from the previous slide:
m P(Q) = 1: the probability of the biggest possible set is equal to 1.

m Property (1) allows us to add probabilities of disjoint sets.

» Disjoint means having no shared elements.
» (Property (1) is called the countable additivity property.)



Probability measure - Properties

Definition 1 implies the following additional properties:

Properties of P(-)
With @ being the empty set, with some sets A, B ¢ Q, and with A° = Q\A denoting the
complement of A, holds, -

) P(@)=0 |=p( = Plov9) = PCDY + PIP) = | + PLB)

ii) PLAUB) = P(A) + P(B) if ANB = @; —a fallows wwb\u)od&\‘h\f“t
S DOASY = 4 = PIAY- | = = PLASA®) = PLAY +RCAS
i) P(AY) =1 P(A); | = P() C D ) - PA) + pLBAY

iv) P(B\A) = P(B) - P(A) ifAcB; PLE) = PLA v LM
v) P(AY < P(B) ifAcB.  ~
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Random variables - Notion

Probability measures allow us to characterize the "randomness" of events.

m But we are often interested in more than just probabilities. For example:

» the number of heads from three (independent) flips of some coin
» the sum of the faces after throwing two dice
» the lifetime of a battery

m We call each of these a random variable because they take on different values
based on random events.

m The probability that a random variable is a certain value will depend on the
probabilities of individual events.
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PMF/PDF




When doing probability calculations, rather than use probability measures (which are
functions of sets), it is often easier to describe a probability distribution using
functions of single variables

1. PMF/PDF

— ——



PMF/PDF - concept

The idea behind a PMF/PDF is to assign probabilities to the possible values of a
random variable.

m The concept is different for discrete and continuous random variables.



PMF/PDF - discrete and continuous case

A random variable X is discrete if its range is finite or countably infinite.
- J

m Examples: Lseke of sed of inteqens
1.)number of heads after two coin flips, Cefy B B G G TR

2.ynumber of coin flips needed before a heads turns up.
m Here probabilities can be assigned to each realizable value. Examples:
1.)For {0, 1,2} (finite), we can assign probabilities 1/4,1/2, and 1/4.
2. )For N (countably infinite), we can assign probabilities (1422k toeachk e N.
m The probability mass function (PMF) f, of a discrete random variable X assigns
probabilities to each realizable valu&of X. Examples:
17fx(0) = ﬁ,fé@) =1/2,and fx(2) = 1/4.
2.) fx(R) = (1/2)" for each k € N.
The PMF at g, fx(a) := P(X = a), is “the probability that X equals a.”
— ——

m The probability that X lies in a set A can be calculated by

P(X € A) = P( UA[X :a] —.ZPUMA): Z fx(a) (2)
e N oA acA

Cavatable

MA\“HVH-Y

» E.g. forlexample 2,what is the probability that X < 3?

P(xe3) - P(xefd) = T4 0=+ L2
= 4
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PMF/PDF - discrete and continuous case
ca. ) \Are/ve\S © 4

A random variable X is conthuous if its range is'uncountably |nﬁ2|te
m Examples: lifetime of a person, time it takes you to finish the first midterm exam

m For any value in the range of a continuous random variable X, the probability that
X is that value must be zero. Why?
» If uncountably many values are assigned positive probability, the sum of those values
would then be infinity!
. . — )
m For a continuous random variable X, at any value a we have P(X = a) = o.

Ed
m The probability density function (PDF)_fl of a continuous random variable X
describes how likely it is for X to lie,a set A of values: i
A (///:
\

P(XeA) = Lf_x(s)ds. ) /ﬂ;_‘_ (3)
so

o
m Letting A = (a,a + h], we can think of the PDF f, at a value a as —
Py Larn) 2 PLX L)

. P(XeA) . Pla<X<a+h)
lim ———= = |lim
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PMF/PDF - discrete and continuous case

From the properties of probability measures, it follows that any PMF fy of a discrete
random variable X must satisfy both

X fx(&) = o for all&, and
E-__ Zauo‘fx(a) =1

Similarly, it follows that any PDF fy of a continuous random variable X must satisfy
both

1. fx(@) = o for allg, and
i ,[aquX(a) dm=1.



Some distributions




Discrete case - Uniform distribution

A random variable X with values in a finite set M is uniformly distributed if each
element in M has the same probability:

P(X=k)=# forallk e M

Y s distibuted os

I

m Such distributions occurjwhen all possible outcomes are equally likely.

m We write X ~ U(M) or X ~ Unif (M).
m Nine random draws in R:
sample(c(1,2,3,4,5,6), size=9, replace=TRUE)
e -

possible outcames
0’(: o Six —sided die



Discrete case - Bernoulli distribution

A random variable X is Bernoulli distributed with parameter p € (0,1),ifP(X=1) =
and P(X=0)=1-

m For when our random experiment has only two possible outcomes ("success" and
"failure").

m Example: flip a coin with probability p of heads ("success"). Is it heads?
m We write X ~ Ber, or X ~ Bern(p).
—————

m Nine random draws in R: rbinom(n=9, size=1, prob=1/3)

Paro—-dt: P
-




Discrete case - Binomial distribution

A random variable X is Binomial distributed with parameters n € Nand p € (0,1) if

P(X = k) = (Z)pkh —p)"* forallk=o,....n.

m We think of n as the number of experiments and p the success probability. In the
above equation, k is the number of successes.

m For measuring the probability of the number of successes of n independent
Bernoulli experiments with parameter p.

m Example: flip a coin n times, each flip with probability p of heads ("success"). How
many heads?

m We write X ~ Bin, , or X ~ Bin(n, p).

m Arandom draw in R: rbinom(n=3, size=1, prob=e.25) |> sum()



Continuous case - Uniform distribution

A random variable X is uniformly distributed on an interval M = (a, b), with b > q, if the
PDF has the form

1
fx(x) = b-a forall x € (a,b).

m Such distributions occur when all (uncountably many) possible outcomes are
equally likely.

m The interval M can also instead be [a, b), or (a, b], or [a, b].
m Here we also write X ~ U(M) or X ~ Unif (M).

m Nine random draws in (3,5) in R: runif(n=9, min=3, max=5)
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Continuous case - Normal distrobution

A random variable X is normally distributed with parameters 1, € R and o> > 0, if the
PDF has the form
1 _%(u)z

e o for all x € R.
ov2r

This distribution appears often in this class, in future classes, and in life!
We write X ~ N(u,”). We also call it Gaussian distributed.

Thereby, E(X) = 1 (location parameter), and Var(X) = o° (squared scale).
If X ~ N(0,1), the distribution of X is said to be standard normal.

Nine random draws in R: rnorm(n=9, mean=2, sd=1)

f(x) =

PDF of X ~ N(0,1),Y ~ N(2,1),Z ~ N(0,3)

15
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Expected value




Expected value - Introduction

The expected value of a random variable is the weighted average of all of its
where the weights are the probabilities that these values occur.

’

Definition 2: Expected value E(-)

Let X be a random variable. Then, the expected value of X is in the discrete case and in
the continuous case (given the PDF fy) is defined as

E(X) = Z P(X =R) - resp.  E(X) = J’a“ fx(s) - sds. ()

all

m The expected value of a random variable sometimes does not exist if, for example,
the random variable is continuous and the weights are "large" for large values of

00
1

the random variable (e.g. E(X) = [;” & - sds = o0).



Expected value - Calculating expected value by hand

Calculate E(X) with PDF f,(a) = §a2 where a € [1,2]



Expected value - Calculation tools

Properties of E(-)
Let ¢ € R be a constant, and let X, Y be random variables for which their expected
values E(X) and E(Y) exists. Then, the following rules hold.
i) E(c) =¢;
i) E(cX) = cE(X);
i) E(X+Y) = E(X) + E(Y).

Example with c =2 E(X) =1,E(Y) =5

18




Variance and covariance




Variance - Introduction

Heuristics
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Variance - Definition and properties

The variance of a random variable is the expected squared deviation of its values to its
expected value.

Definition 3: Variance Var(-)

Let X be a random variable with E(X?) < co. Then the variance of X is defined as

Var(X) := E[{X — E(X)}*]. (5)

Think of Var(X) as “how much X varies about its mean.” We can deduce:
m Var(X) = o.
m Var(X) = 0 = X is constant.
m The variance of X can also be calculated as

var(X) = E(X°) = (E(X))?. (6)



Variance - Calculation tools

Properties of Var(-)

Let ¢ € R be a constant, and let X be a random variable with E(X*) < co. Then
i) Var(c) = o;
ii) Var(X + c) = Var(X);

iii) var(cX) = var(X);

Recall intuition: Var(X) is “how much X varies about its mean.”

Example with ¢ = 5, Var(X) = 1, Var(Y) = 2.



Covariance and correlation - Motivation

Expected value and variance help characterize the distribution of a single random
variable X.

Now suppose we want to characterize the relationship between two random variables
XandyY.
m A complete characterization requires assigning probabilities to every possible pair
of values that (X, Y) could be.
m Simpler characterizations are the covariance and correlation of X and Y.

22 28



Covariance - Introduction

Heuristics
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Covariance - Definition and properties

Definition 4: Covariance Cov(-, -)

Let X, Y be random variables with E(X*), E(Y?) < co. Then the covariance between X and
Y is defined as

Cov(X,Y) := E((X = E(X))(Y — E(Y))). @)

The covariance between X and Y can also be calculated as
Cov(X,Y) = E(XY) — E(X)E(Y). (8)

m We say X and Y are uncorrelated if Cov(X,Y) = 0. Then X and Y have no linear
relationship, and E(XY) = E(X)E(Y).
Cov(X,Y) > o indicate a positive linear relationship between X and Y.

Cov(X,Y) < oindicate a negative linear relationship between X and Y.

Covariance is symmetric: Cov(X,Y) = Cov(Y,X).

24 28



Correlation coefficient

Definition 5: Correlation coefficient p(-, -)

Let X, Y be random variables with E(X*), E(Y?) < oo. Then, the correlation coefficient
between X and Y is defined as, provided Var(X) > o and Var(Y) > o,
Cov(X,Y)

p(X,Y) = W €[-1,1]. (9)

m p(X,Y) = 0 = between X and Y is no linear relationship.
m p(X,Y) = —-1(1) = all values of X and Y lie on a line with negative (positive) slope.

m If p(X,Y) is close to -1 (1), there is a strong negative (positive) linear relationship
between X and Y.
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Variance and covariance - More calculation tools

Properties of Var(-) and Cov(-, -)
Let c € R be a constant, and let X, Y, Z be random variables with E(X*) < oo, E(Y?) < oo,
and E(Z%) < oo. Then

iv) Var(X) = Cov(X,X)

v) Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)

vi) Cov(X,Y) = Cov(Y,X)

)
vii) Cov(X +Y,Z) = Cov(X,Z) + Cov(Y,Z) and Cov(cX,Z) = cCov(X,Z)

(Property vii says Cov(-, ) is linear in its first argument. Because Cov(-, -) is symmetric,
it is also linear in its second argument. Thus we call it bilinear.)

Example with ¢ = 5, Var(X) = 1,Var(Y) = 2,Cov(X,Y) = 1/3.



Conditional probability and independence




Conditional probability - Introduction

Heuristics
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Definition and properties

An event is a subset of the sample space Q.

Definition 6: Conditional probability

For events A, B ¢ Q, the conditional probability of A given B is defined by

PUNE) " if P(B) > 0
pag) = | @ TPE)>0 (10)
o, if P(B) = 0.
m Events A and B are called independent if
P(An B) = P(A)P(B). (11)
Here knowing B provides no information about A, and vice versa.
m Equivalently, events A and B are independent if P(A|B) = P(A).
m Random variables X and Y are called independent if for all sets A, B holds,
P(X € A,Y € B) = P(X € A)P(Y € B). (12)

Independent random variables are uncorrelated.
But uncorrelated random variables are not necessarily independent!
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