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The prerequisite for this class is either STA 108 (regression) or STA 106 (ANOVA), so |
expect you have already learned everything in this slide deck.

m If you need a refresher on probability, you can refer to this free textbook:
https://www.probabilitycourse.com/



Probability measure and random variables




Probability measure - Motivation

Probability is a way to quantify randomness and/or uncertainty.
m e.g, coin flips, dice rolls, stocks, weather.
Rules of probability should be intuitive and self-consistent.
Self-consistent: the rules shouldn’t lead to contradictions.

Suppose we want to assign a probability to each event in a set of possible events.

We would like, at the very least:
1. each probability to be a value between o0 and 1 (inclusive)
2. the probability assigned to the full set of events to be 1
3. the probability assigned to the empty set to be 0

]
]
m Thus these rules must be constructed in a certain way.
]
]

m We need more restrictions to ensure self-consistency.
The following definition will lead to intuitive and self-consistent rules of probability.



Probability measure - Definition

Definition 1: Probabilty measure P(-)

For a nonempty set £, the set function P: Q — [0,1] is a probability measure, if
m P(Q) =1,
m for any pairwise disjoints sets A, A,, - -- < Q (i.e. A, n A; = @ for all i,j with i # j),

holds:
P([JA) =Y Pa). ()

ieN ieN

This definition fulfills the three properties from the previous slide:
m P(Q) = 1: the probability of the biggest possible set is equal to 1.

m Property (1) allows us to add probabilities of disjoint sets.

» Disjoint means having no shared elements.
» (Property (1) is called the countable additivity property.)



Probability measure - Properties

Definition 1 implies the following additional properties:

Properties of P(-)
With @ being the empty set, with some sets A, B ¢ Q, and with A° = Q\A denoting the
complement of A, holds, -

) P@)=0; |= P = PL9g) = PCD+PIP) = | + PLP)

ii) PAAUB) = P(A) + P(B) if ANB = @; — follaws Fom wwb\u)odd:h\.{H
o4 L= = PLACA®) = P(A) +PCAS
iii) P(A) =1-P(A); | = P () h) o o + pLEA)

iv) P(B\A) = P(B) — P(A) ifAcB; PLB) = P(av L&A
v) P(A) < P(B) ifA < B.
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Random variables - Notion

Probability measures allow us to characterize the "randomness" of events.

m But we are often interested in more than just probabilities. For example:

» the number of heads from three (independent) flips of some coin
» the sum of the faces after throwing two dice
» the lifetime of a battery

m We call each of these a random variable because they take on different values
based on random events.

m The probability that a random variable is a certain value will depend on the
probabilities of individual events.
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PMF/PDF




When doing probability calculations, rather than use probability measures (which are
functions of sets), it is often easier to describe a probability distribution using
functions of single variables

1. PMF/PDF



PMF/PDF - concept

The idea behind a PMF/PDF is to assign probabilities to the possible values of a
random variable.

m The concept is different for discrete and continuous random variables.



PMF/PDF - discrete and continuous case

A random variable X is discrete if its range is finite or countably infinite.
- J

m Examples: .
. . o
1.) number of heads after two coin flips, ey, Sesers of sed of inteqe

2.)number of coin flips needed before a heads turns up.
m Here probabilities can be assigned to each realizable value. Examples:
1.)For {0,1,2} (finite), we can assign probabilities 1/4, 1/2,and 1/4.
2.)For N (countably infinite), we can assign probabilities (1422k toeachk e N.
m The probability mass function (PMF) fy of a discrete random variable X assigns
probabilities to each realizable valu€of X. Examples:
17fx(0) = %{gﬂ) =1/2,and fx(2) = 1/4.
2,) fx(R) = (1/2)" for each k € N.
The PMF at g, fx(a) := P(X = a), is “the probability that X equals a.”
—

m The probability that X lies in a set A can be calculated by

P(X € A) = \7( UA[X =«]>;ZPL1=«)= > fx(a) ()
e [N oA aeA

C»aul\\’oh\g

MA(HV-‘!—Y

» E.g. forlexample 2/ what is the probability that X < 3?

P(X(&\ = P(Xei\")_?s) = ‘Z__{_XL\LB = (: +% S 3
= 4
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PMF/PDF - discrete and continuous case
Q% \AYe/ve\S ©

A random variable X is continuous if its range is uncountably |nﬁn|te

1
=
\/
: }

m Examples: lifetime o%a person, time it takes you to finish the ﬁjrst midterm exam

m For any value in the range of a continuous random variable X, the probability that
X is that value must be zero. Why?
» If uncountably many values are assigned positive probability, the sum of those values
would then be infinity!

. . —
m For a continuous random variable X, at any value a we have P(X = a) = 0

L ——————
m The probability density function (PDF)_]E( of a continuous random variable X
describes how likely it is for X to lie in a set A of values:

P(X €A) = Lﬁ(s)ds. A (3)

6,
SO

o
m Letting A = (a,a + h], we can think of the PDF f, at a value a as ——
Plxcar) = PLXLa)

. P(XeA) . Pla<X<a+h)
lim ———= = |lim =

P
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PMF/PDF - discrete and continuous case

From the properties of probability measures, it follows that any PMF fy of a discrete
random variable X must satisfy both

1. fx(a) = oforall a, and

2. ) e fx(a) =1

Similarly, it follows that any PDF fy of a continuous random variable X must satisfy
both

1. fx(a) = o forall a, and
2. Jq fx(a@)da =1



Some distributions




Discrete case - Uniform distribution

A random variable X with values in a finite set M is uniformly distributed if each
element in M has the same probability:

P(X=k)=# forallk e M

Y is distibuted as

m We write X ~ U(M) orx‘é Unif(M).

m Such distributions occur when all possible outcomes are equally likely.

I

m Nine random draws in R:
sample(c(1,2,3,4,5,6), size=9, replace=TRUE)
|E——

Possi‘a(c outcames
of o0 Six-sided de
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Discrete case - Bernoulli distribution

A random variable X is Bernoulli distributed with parameter p € (0,1),ifP(X=1) =
and P(X=0)=1-

m We write X ~ Bern(p).

m For when a random experiment has only two possible outcomes ("success" and
"failure").

m Example: flip a coin with probability p of heads ("success"). Is it heads?

m Nine random draws in R: rbinom(n=9, size=1, prob=1/3)
— —

faro-—c.k: P

-

Ead of ©®fis
lgc‘hﬂ‘b
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Discrete case - Binomial distribution

i:\;wu—’& WL A PW\‘ 04, & Succensed

&:-l—v\\:évg‘\g:i Pm\a of w-e 'Fr,\'\vm\

A random variable X is Binomial\distributeg/with parameters n € Nand p € (0,1) if
P(x=3)* t\ Ny
PL%—Z\’ P(X=R) = Zpk(1—p)"_h forallk=o0,...,n

PCX=) = pUR vpp 2 2y

m We write X ~ Bin(n, p).

m For measuring the probability of the number of successes of n independent
Bernoulli experiments with “success probability” parameter p.

m Example: how many heads in n independent coin flips, each flip with probability p
of heads ("success")?

a
m Arandom draw in R: rbinom(n=3, size=1, prob=e.25) |> sum()
'_J ——
—
e,y O
86 O



Continuous case - Uniform distribution

A random variable X is uniformly distributed on an interval M = (a, b), with b > q, if the
PDF has the form ;
fx(c) = b-a forall c € (a,b).

m Here we also write X ~ U(M) or X ~ Unif(M).

m Such distributions occur when all (uncountably many) possible outcomes are
equally likely.

m The interval M can also instead be [a, b), or (a, b], or [a, b].

m Nine random draws in (3,5) in R: runif(n=9, min=3, max=5)

('m\b) = b
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Continuous case - Normal distribution

A random variable X is normally distributed with parameters la € R and a > 0, if the
PDF has the form

a sqmectde fundione £ (c) = L e forallceR.
o2
m We write X ~ N(u, 0%). We also call it Gaussian distributed.
m This distribution appears often in this class, in future classes, and in life!

m It can be shown that E(X) = x (location parameter) and Var(X) = o° (squared
scale). - -

m If X ~ N(0,1), the distribution of X is said to be standard normal.
m Nine random draws in R: rnorm(n=9, mean=2, sd=1)
— -— — —-—
M o
PDF of X ~ N(0,1),Y ~ N(2,1),Z ~ N(0, 3)

pof
o X
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Expected value




Expected value - Introduction

The expected value of a random variable is the weighted average of all of its
where the weights are the probabilities that these values occur.

’

Definition 2: Expected value E(-)

Let X be a random variable. Then, the expected value of X is in the discrete case and in
the continuous case (given the PDF fy) is defined as

E(X)=) P(X=k)- resp.  E(X)= | fx(s)-sds. (4)
all p ————— alls v—_¢

m The expected value of a random variable sometimes does not exist if, for example,
the random variable is continuous and the weights are "large" for large values of

00
1

the random variable (e.g. E(X) = [;” & - sds = o0).



Expected value - Calculating expected value by hand

Calculate the expected value of a random variable with PDF fy (a) = 302 where a € [1,2]
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Expected value - Calculation tools

Properties of E(-)

Let ¢ € R be a constant, and let X, Y be random variables for which their expected
values E(X) and E(Y) exists. Then, the following rules hold.

i) E(c) =¢;
i) E(cX) = cE(X);
i) E(X+Y) = E(X) + E(Y).

Example with c = 2, E(X) = 1,E(Y) =5
E(exy) = <B(Y) =2\ =2

) = B+ EWY) = (S =6
€ (xsd = BN + B Ex) +c = (#2273

E(c,‘( ¥ )(> - BE(Y\* EXX) = c,EL\') + E(ﬁ> =2-S+| =)

1
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Variance and covariance




Variance - Introduction

Heuristics
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Variance - Definition and properties

The variance of a random variable is the expected squared deviation of its values to its
expected value.

Definition 3: Variance Var(-)

Let X be a random variable with E(X?) < co. Then the variance of X is defined as

2 x~5u\1 Var(X) = E[{X - EX)}’]. = E[ (‘ﬁ““""*)j (5)
=Elr} - E[Et‘g
= E€[x) ~EO> =0 :
Think of Var(X) as “how much X varies about its mean.” We can deduce:
m Var(X) = o.
m Var(X) = 0 = X is constant.
m The variance of X can also be calculated as

var(X) = E(X°) = (E(X))?. (6)
L———c"




Variance - Calculation tools

Properties of Var(-)

Let ¢ € R be a constant, and let X be a random variable with E(X*) < co. Then
. |
i) Var(c) = o;
ii) Var(X + c) = Var(X);

iii) var(cX) = var(X);

Recall intuition: Var(X) is “how much X varies about its mean.”
Example with ¢ = 5, Var(X) =1, Var(Y) = 2.

\lar (X £ = Jor OF) = |

Yoo (X)) = o) = 572 =50

End of (01'7

lectuce




Covariance and correlation - Motivation

Expected value and variance help characterize the distribution of a single random
variable X.

Now suppose we want to characterize the relationship between two random variables
XandyY.
m A complete characterization requires assigning probabilities to every possible pair
of values that (X, Y) could be.
m Simpler characterizations are the covariance and correlation of X and Y.
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Covariance - Introduction

Heuristics



Covariance - Definition and properties

Vs () = EJ (-6 = E[ (-8 (x -8 = Caulx, ¥

Definition 4: Covariance Cov(-, -)

Let X, Y be random variables with E(X*), E(Y?) < co. Then the Sovariance between X and

Y is defined as goenhad  ycenteee
PN A
Cov(X,Y) := E[(X - EXO))(y - E(Y)ﬂ. ?)
m The covariance between X and Y can also be calculated as

Cov(X,Y) = E(XY) — E(X)E(Y). (8)

We say X and Y are uncorrelated if Cov(X,Y) = 0. Then X and Y have no linear
relationship, and E(XY) = E(X)E(Y).
Cov(X,Y) > o indicate a positive linear relationship between X and Y.

Cov(X,Y) < oindicate a negative linear relationship between X and Y.

Covariance is symmetric: Cov(X,Y) = Cov(Y,X).



Correlation coefficient

\l\lal()‘) = stYandoard deviation o-G X

Definition 5: Correlation coefficient p(-, -)

Let X, Y be random variables with E(X*), E(Y?) < oo. Then, the correlation coefficient
between X and Y is defined as, provided Var(X) > o and Var(Y) > o,
Cov(X,Y

oY) ¢ (). (9)

= —m—  —;—_—me. E
VVar(X)y/Var(Y)
Cavorion ce b eteen X Y
tweo .u-S U{uv\f* Vovione E- = CO\/ m \ m

m p(X,Y) = 0 = between X and Y is no linear relationship.
m p(X,Y) = —-1(1) = all values of X and Y lie on a line with negative (positive) slope.

m If p(X,Y) is close to -1 (1), there is a strong negative (positive) linear relationship
between X and Y.

p(X,Y)
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Variance and covariance - More calculation tools

Properties of Var(-) and Cov(-, -)
Let ¢ € R be a constant, and let X, Y, Z be random variables with E(X*) < oo, E(Y?) < oo,
and E(Z%) < oo. Then

iv) Var(X) = Cov(X,X)

v) Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)

vi) Cov(X,Y) = Cov(Y,X)
vii) Lg/(x +Y,Z) = Cov(X,Z) + Cov(Y,Z)JandCLv(cXJ) = cCov(X7Z)/

(Property vii says Cov(-, ) is linear in its first argument. Because Cov(-, -) is symmetric,
it is also linear in its second argument. Thus we call it bilinear.)

Example with c = 5, Var(X) = 1,Var(Y) = 2, Cov(X,Y) = 1/3.
Vor (¥ +Y) 2 Vav (e + Verl¥) « 2 Cov (X, Y1)

C"VD-IL\L> « \/ult‘() + ZCC.WLX,‘()

) _|an
1< 2 ¥ 73 'kg,

| «

"



Conditional probability and independence




Conditional probability - Introduction

Heuristics

Iu\c&e?er\d\a«\'\" % é\gloif\\‘ ‘_

ITE A ond B are A‘\s:)o'm*)
dhen kaowing B oceurred Fels

ws 4wet A did asY occur,
(4

K—ﬂQW{Aj g otcurred felle uS
o \ot of infarmation avout A
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Definition and properties

An event is a subset of the sample space Q.

Definition 6: Conditional probability

For events A, B c Q, the conditional probability of A given B is defined by
ay P(ANB)

P(A|B) ={ P(E) 7 ifP(B) - o
o, if P(B) = 0.

m Events A and B are called independent if
IT& A ond B are disyownt, J*i"“‘?“‘d"‘* #
Hhea knowing B occursed dells P(ANB) = P(A)P(§)~
s 4wet A did as} oceur
Here knowing B provides no information about A, and vice versa.
m Equivalently, events A and B are independent if P(A|B) = P(A)

m Random variables X and Y are called independent if for all sets A, B holds,

P(X €AY eB)=PXeAP(Y e B). (12)

m Independent random variables are uncorrelated.
m But uncorrelated random variables are not necessarily independent!
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Conditional probability and independence

Bayes' rule



Introduction

From the definition of conditional probability, we know for any two events A and B that

P(BIA)P(A) = P(A 1 B) = P(A|B) P(B).

Dividing by P(A) (assuming it is not zero), we get Bayes’ rule:

Theorem 2: Bayes' theorem

Let Q # @. For any events A, B € Q with P(A) # 0 holds, P(8) = prior informetion ovet B

P(A),

Often P(A) is unknown and difficult to deduce; can use the law of total probability (14).
m Because the sets A n B'and'A n B° partition the set A, we can write P(A) as

P(A) = P(’(.A"B)""“‘“‘» LA"Q) *P(A"G‘) P(A|B)P(B) + P(A|B YP(B* ).
L_J
m More generally, for any partition {B,, B,, ...} of Q, we can write P(A) as

T]‘M\A"&\, Al\@,_l 000 Pb(‘HdﬂA
Z (A|B;)P(B; (1)

= ]



Example: False positive paradox

A certain disease affects aboutl1 out of 10,000 beople. There is a test to check whether
the person has the disease. In particular, we know that
—>m the probability that the test result is positive, given that the person does not have
the disease, is 2%;
m the probability that the test result is negative, given that the person has the
disease, is1%. P(+S1Dd = 0.0 =  P(+\D)= |- &0 =0.99
Suppose a random person gets tested for the disease and the test result is positive.
What is the probability that the person has the disease?

‘4" - positive et resunlt
SN — evsdn  Was  disease ,/——_—\
> PGo) POY T gaeo
%a\'“' Wl P(D I+3 = P(+) T p.020093 ~\b—
(4 = P(+1D)PDY + P+ DY PLDY) o o
(‘a’t&

0.99 - 0.000\ « 0.02° (- o,oom)

1l

0.0 007

\!
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Example: False positive paradox

00 1 tested negative

X T525
O D(100)—|
L2
tested positive
1,000,000 —
528

100 979,902 tested negative

10,000

D*(999,900) —

2

>< —_—
19,998 ) tested positive

Fig.1.25 - Tree diagram for Example 1.26.

From textbook Pishro-Nik (2014).
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Bayesian paradigm

Bayes' rule enables Bayesian statistics (STA 145).

m Bayesian interpretation: probability expresses a degree of belief in an event.
Use Bayes' rule to update degree of belief based on observed data.

m Frequentist interpretation: probability is the long-run relative frequency of an
event after many trials.
e

m Don't need to know for this course. More intuition here
https://www.youtube.com/watch?v=9wCnvr7XwsE
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