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Overview

� Probability measure and random variables

� PMF/PDF

� Some distributions

� Expected value

� Variance and covariance

� Conditional probability and independence
Bayes’ rule

The prerequisite for this class is either STA ��� (regression) or STA ��� (ANOVA), so I
expect you have already learned everything in this slide deck.

If you need a refresher on probability, you can refer to this free textbook:
https://www.probabilitycourse.com/
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Probability measure and random variables



Probability measure - Motivation

Probability is a way to quantify randomness and/or uncertainty.
e.g., coin flips, dice rolls, stocks, weather.
Rules of probability should be intuitive and self-consistent.
Self-consistent: the rules shouldn’t lead to contradictions.
Thus these rules must be constructed in a certain way.
Suppose we want to assign a probability to each event in a set of possible events.
We would like, at the very least:
�. each probability to be a value between � and � (inclusive)
�. the probability assigned to the full set of events to be �
�. the probability assigned to the empty set to be �

We need more restrictions to ensure self-consistency.
The following definition will lead to intuitive and self-consistent rules of probability.
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Probability measure - Definition

Definition �: Probabilty measure P(�)
For a nonempty set ⌦, the set function P⇥⌦ � [�, �] is a probability measure, if

P(⌦) = �,
for any pairwise disjoints sets A�,A�, � � � N ⌦ (i.e. Ai = Aj = o for all i, j with i j j),
holds:

P⇤⌫
i"N
Ai = =

i"N
P(Ai). (�)

This definition fulfills the three properties from the previous slide:
P(⌦) = �: the probability of the biggest possible set is equal to �.
Property (�) allows us to add probabilities of disjoint sets.
Z Disjoint means having no shared elements.
Z (Property (�) is called the countable additivity property.)
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Probability measure - Properties

Definition � implies the following additional properties:

Properties of P(�)
With o being the empty set, with some sets A,B L ⌦, and with Ac = ⌦\A denoting the
complement of A, holds,
i) P(o) = �;
ii) P(A < B) = P(A) + P(B) if A = B = o;

iii) P(Ac) = � � P(A);
iv) P(B \ A) = P(B) � P(A) if A N B;
v) P(A) & P(B) if A N B.

� ��
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1 = P(c) = p(aud) = P(r) + p(q) = 1 + P(q)

-> follows from countable additivity

1 = P(t) = P(A-Ac) = P(A) + PLAY

P(B) = P(Au (B) A)) = P(A) + P(B(A)
=> -
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Random variables - Notion

Probability measures allow us to characterize the "randomness" of events.
But we are often interested in more than just probabilities. For example:
Z the number of heads from three (independent) flips of some coin
Z the sum of the faces after throwing two dice
Z the lifetime of a battery

We call each of these a random variable because they take on di�erent values
based on random events.
The probability that a random variable is a certain value will depend on the
probabilities of individual events.
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PMF/PDF



Motivation

When doing probability calculations, rather than use probability measures (which are
functions of sets), it is often easier to describe a probability distribution using
functions of single variables
�. PMF/PDF
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PMF/PDF - concept

The idea behind a PMF/PDF is to assign probabilities to the possible values of a
random variable.

The concept is di�erent for discrete and continuous random variables.
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PMF/PDF - discrete and continuous case

A random variable X is discrete if its range is finite or countably infinite.
Examples:
�. number of heads after two coin flips,
�. number of coin flips needed before a heads turns up.

Here probabilities can be assigned to each realizable value. Examples:
�. For {�, �, �} (finite), we can assign probabilities �/�, �/�, and �/�.
�. For N (countably infinite), we can assign probabilities (�/�)k to each k " N.

The probability mass function (PMF) fX of a discrete random variable X assigns
probabilities to each realizable value of X. Examples:
�. fX(�) = �/�, fX(�) = �/�, and fX(�) = �/�.
�. fX(k) = (�/�)k for each k " N.

The PMF at a, fX(a)  P(X = a), is “the probability that X equals a.”
The probability that X lies in a set A can be calculated by

P(X " A) = = =
a"A

fX(a) (�)

Z E.g. for example �, what is the probability that X < �?
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PMF/PDF - discrete and continuous case

A random variable X is continuous if its range is uncountably infinite.
Examples: lifetime of a person, time it takes you to finish the first midterm exam
For any value in the range of a continuous random variable X, the probability that
X is that value must be zero. Why?
Z If uncountably many values are assigned positive probability, the sum of those values

would then be infinity!

For a continuous random variable X, at any value a we have P(X = a) = �.
The probability density function (PDF) fX of a continuous random variable X
describes how likely it is for X to lie in a set A of values:

P(X " A) = E
A
fX(s)ds. (�)

Letting A = (a,a + h], we can think of the PDF fX at a value a as
lim
h��+

P(X " A)
h = lim

h��+
P(a < X & a + h)

h
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PMF/PDF - discrete and continuous case

From the properties of probability measures, it follows that any PMF fX of a discrete
random variable X must satisfy both
�. fX(a) ' � for all a, and
�. <all a fX(a) = �.

Similarly, it follows that any PDF fX of a continuous random variable X must satisfy
both
�. fX(a) ' � for all a, and
�. Dall a fX(a)da = �.
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Some distributions



Discrete case - Uniform distribution

A random variable X with values in a finite set M is uniformly distributed if each
element in M has the same probability:

P(X = k) = �
#M for all k " M

We write X ⇥ U(M) or X ⇥ Unif(M).
Such distributions occur when all possible outcomes are equally likely.
Nine random draws in R:
sample(c(�,�,�,�,�,�), size��, replace�TRUE)

�� ��
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Discrete case - Bernoulli distribution

A random variable X is Bernoulli distributed with parameter p " (�, �), if P(X = �) = p
and P(X = �) = � � p.

We write X ⇥ Bern(p).
For when a random experiment has only two possible outcomes ("success" and
"failure").
Example: flip a coin with probability p of heads ("success"). Is it heads?
Nine random draws in R: rbinom(n��, size��, prob��/�)

�� ��
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Discrete case - Binomial distribution

A random variable X is Binomial distributed with parameters n " N and p " (�, �) if
P(X = k) = ⇧nk↵pk(� � p)n�k for all k = �, . . . ,n.

We write X ⇥ Bin(n,p).
For measuring the probability of the number of successes of n independent
Bernoulli experiments with “success probability” parameter p.
Example: how many heads in n independent coin flips, each flip with probability p
of heads ("success")?

A random draw in R: rbinom(n��, size��, prob��.��) |� sum()

�� ��
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Continuous case - Uniform distribution

A random variable X is uniformly distributed on an interval M = (a,b), with b > a, if the
PDF has the form

fX(c) = �
b � a for all c " (a,b).

Here we also write X ⇥ U(M) or X ⇥ Unif(M).
Such distributions occur when all (uncountably many) possible outcomes are
equally likely.
The interval M can also instead be [a,b), or (a,b], or [a,b].
Nine random draws in (�, �) in R: runif(n��, min��, max��)

�� ��
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Continuous case - Normal distribution

A random variable X is normally distributed with parameters µ " R and �� > �, if the
PDF has the form

fX(c) = �
�
”
�⇡
e�

�
� ( c�µ� )� for all c " R.

We write X ⇥ N(µ,��). We also call it Gaussian distributed.
This distribution appears often in this class, in future classes, and in life!
It can be shown that E(X) = µ (location parameter) and Var(X) = �� (squared
scale).
If X ⇥ N(�, �), the distribution of X is said to be standard normal.
Nine random draws in R: rnorm(n��, mean��, sd��)

PDF of X ⇥ N(�, �), Y ⇥ N(�, �), Z ⇥ N(�, �)
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Expected value - Introduction

The expected value of a random variable is the weighted average of all of its values,
where the weights are the probabilities that these values occur.

Definition �: Expected value E(�)
Let X be a random variable. Then, the expected value of X is in the discrete case and in
the continuous case (given the PDF fX) is defined as

E(X) = =
all k

P(X = k) � k resp. E(X) = E
all s

fX(s) � sds . (�)

The expected value of a random variable sometimes does not exist if, for example,
the random variable is continuous and the weights are "large" for large values of
the random variable (e.g. E(X) = Dô

�
�
s� � sds = ô).
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Expected value - Calculating expected value by hand

Calculate the expected value of a random variable with PDF fX(a) = �
�a

� where a " [�, �]

�� ��

E(X) = Sofy(d) ada
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Expected value - Calculation tools

Properties of E(�)
Let c " R be a constant, and let X, Y be random variables for which their expected
values E(X) and E(Y) exists. Then, the following rules hold.
i) E(c) = c;
ii) E(cX) = cE(X);
iii) E(X + Y) = E(X) + E(Y).
Example with c = �, E(X) = �, E(Y) = �

�� ��

E(cX) = cE(X) = 2 . 1 = 2

E(X + Y) = E(X) + E(Y) = 1 + 5 = 6

= (x +c = E(X) + E() = E(x) + c = 1 + 2 = 3

E(cY + x) = E(Y) + E(X) =
cE(Y) + E(X) = 2. 5 + 1 = 11



Variance and covariance



Variance - Introduction

Heuristics
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Variance - Definition and properties

The variance of a random variable is the expected squared deviation of its values to its
expected value.

Definition �: Variance Var(�)
Let X be a random variable with E(X�) < ô. Then the variance of X is defined as

Var(X)  E[{X � E(X)}�]. (�)

Think of Var(X) as “how much X varies about its mean.” We can deduce:
Var(X) ' �.
Var(X) = �� X is constant.
The variance of X can also be calculated as

Var(X) = E(X�) � (E(X))�. (�)

�� ��
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Variance - Calculation tools

Properties of Var(�)
Let c " R be a constant, and let X be a random variable with E(X�) < ô. Then
i) Var(c) = �;
ii) Var(X + c) = Var(X);
iii) Var(cX) = c�Var(X);
Recall intuition: Var(X) is “how much X varies about its mean.”
Example with c = �, Var(X) = �, Var(Y) = �.

�� ��
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Var(X + c) = Var(X) = 1

Var(cY) = cVar(i) = 52 . 2 =
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Covariance and correlation - Motivation

Expected value and variance help characterize the distribution of a single random
variable X.

Now suppose we want to characterize the relationship between two random variables
X and Y.

A complete characterization requires assigning probabilities to every possible pair
of values that (X, Y) could be.
Simpler characterizations are the covariance and correlation of X and Y.
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Covariance - Introduction

Heuristics
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Covariance - Definition and properties

Definition �: Covariance Cov(�, �)
Let X, Y be random variables with E(X�), E(Y�) < ô. Then the covariance between X and
Y is defined as

Cov(X, Y)  E((X � E(X))(Y � E(Y))) . (�)

The covariance between X and Y can also be calculated as

Cov(X, Y) = E(XY) � E(X)E(Y) . (�)

We say X and Y are uncorrelated if Cov(X, Y) = �. Then X and Y have no linear
relationship, and E(XY) = E(X)E(Y).
Cov(X, Y) > � indicate a positive linear relationship between X and Y.
Cov(X, Y) < � indicate a negative linear relationship between X and Y.
Covariance is symmetric: Cov(X, Y) = Cov(Y, X).

�� ��
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Correlation coe�cient

Definition �: Correlation coe�cient ⇢(�, �)
Let X, Y be random variables with E(X�), E(Y�) < ô. Then, the correlation coe�cient
between X and Y is defined as, provided Var(X) > � and Var(Y) > �,

⇢(X, Y)  Cov(X, Y)‘
Var(X)‘Var(Y) " [��, �] . (�)

⇢(X, Y) = �� between X and Y is no linear relationship.
⇢(X, Y) = �� (�) � all values of X and Y lie on a line with negative (positive) slope.
If ⇢(X, Y) is close to -� (�), there is a strong negative (positive) linear relationship
between X and Y.

�� ��
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Variance and covariance - More calculation tools

Properties of Var(�) and Cov(�, �)
Let c " R be a constant, and let X, Y, Z be random variables with E(X�) < ô, E(Y�) < ô,
and E(Z�) < ô. Then
iv) Var(X) = Cov(X, X)
v) Var(X + Y) = Var(X) + Var(Y) + �Cov(X, Y)
vi) Cov(X, Y) = Cov(Y, X)
vii) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z) and Cov(cX, Z) = cCov(X, Z)
(Property vii says Cov(�, �) is linear in its first argument. Because Cov(�, �) is symmetric,
it is also linear in its second argument. Thus we call it bilinear.)

Example with c = �, Var(X) = �, Var(Y) = �, Cov(X, Y) = �/�.

�� ��
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Var(cX + Y) = Var(cX) + Var(i) + 2 Cor(cX , i)

= cVar(X) + Var(Y) + 2cCor(X , Y)

= 25 +2 + = =3)



Conditional probability and independence



Conditional probability - Introduction

Heuristics

�� ��

IndependentI disjoint !

If A and B are disjoint,

then knowing B occurred tells

us that A did not occur.

↓

knowing B occurred tells us

a lot of information about A
.



Definition and properties

An event is a subset of the sample space ⌦.

Definition �: Conditional probability
For events A,B N ⌦, the conditional probability of A given B is defined by

P(A∂B) = w P(A=B)
P(B) , if P(B) > �,
�, if P(B) = �. (��)

Events A and B are called independent if

P(A = B) = P(A)P(B). (��)

Here knowing B provides no information about A, and vice versa.
Equivalently, events A and B are independent if P(A∂B) = P(A).
Random variables X and Y are called independent if for all sets A,B holds,

P(X " A, Y " B) = P(X " A)P(Y " B). (��)

Independent random variables are uncorrelated.
But uncorrelated random variables are not necessarily independent!

�� ��
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Conditional probability and independence

Bayes’ rule



Introduction

From the definition of conditional probability, we know for any two events A and B that

P(B∂A)P(A) = P(A = B) = P(A∂B)P(B) .
Dividing by P(A) (assuming it is not zero), we get Bayes’ rule:
Theorem �: Bayes’ theorem
Let ⌦ j o. For any events A,B N ⌦ with P(A) j � holds,

P(B∂A) = P(A∂B)P(B)
P(A) . (��)

Often P(A) is unknown and di�cult to deduce; can use the law of total probability (��).
Because the sets A = B and A = Bc partition the set A, we can write P(A) as

P(A) = = P(A∂B)P(B) + P(A∂Bc)P(Bc).
More generally, for any partition {B�,B�, . . .} of ⌦, we can write P(A) as

P(A) = ô

=
j=�
P(A∂Bj)P(Bj). (��)

�� ��
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Example: False positive paradox

A certain disease a�ects about � out of ��,��� people. There is a test to check whether
the person has the disease. In particular, we know that

the probability that the test result is positive, given that the person does not have
the disease, is �%;
the probability that the test result is negative, given that the person has the
disease, is �%.

Suppose a random person gets tested for the disease and the test result is positive.
What is the probability that the person has the disease?

�� ��

P(D) =
0

o
00 = 0, 0001

E

-

P(+ 1D) = 0 . 02

P( +< (D) = 0
. 01 => P(+ 1D) = 1 - 0. 01 = 0 . 99

"t" - positive test result

"D"-person has disease

P(D( + )=(D) 0 .
005

Bayes Thm:
0.

020097

↓

P(+) =x+ (4)p(D) + p(+ (b)P(D) 50 x base

-- rate

= 0. 99 . 0. 0001 + 0 . 02 . (1 - 0. 0001)

= 0 . 020097



Example: False positive paradox

Figure: From textbook Pishro-Nik (����).
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Bayesian paradigm

Bayes’ rule enables Bayesian statistics (STA ���).
Bayesian interpretation: probability expresses a degree of belief in an event.
Use Bayes’ rule to update degree of belief based on observed data.
Frequentist interpretation: probability is the long-run relative frequency of an
event after many trials.
Don’t need to know for this course. More intuition here
https://www.youtube.com/watch?v��wCnvr�Xw�E
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