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Overview

Based on Chapter � of ISL book James et al. (����).

� Simple linear regression

� Idea of multiple linear regression

� Idea of polynomial regression
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Simple linear regression



Concept

Simple linear regression (SLR): predict a quantitative response Y using a linear
relationship between X and Y.

The relationship can be expressed mathematically as

Y = �� + ��X + ",

where �� and �� are two unknown, fixed constants, that represent the intercept
and the slope in the linear model, and " is an error term.
�� and �� are usually called coe�cients or parameters.
We sometimes say that we regress Y on X.

� ��

Y = f(x) + E
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Estimation – i) Main idea

In practice, the parameters �� and �� are unknown.
We aim to estimate these parameters using observed data

(x�, y�), (x�, y�), . . . , (xn, yn).
(This is the training data discussed the previous section.)
Aim: find estimators �̂� and �̂� to predict Y based on X = x by computing

ŷ = �̂� + �̂�x.

We would like the resulting line with �̂� and �̂� to be a good representation of the
relationship between Y and X.
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Estimation – ii) Least squares estimators

Our chosen estimators will be derived using the ordinary least squares (OLS) method.
For each observed (xi, yi), let ŷi = �̂� + �̂�xi be the prediction for Y based on the ith
value of X. Then ei  yi � ŷi represents the ith residual.
Any pair ⇤�̂�, �̂� of estimators induces a residual sum of squares (RSS):

RSS⇤�̂�, �̂�  e�� + e�� +⇧ + e�n

= ⇤y� � ŷ� � + ⇤y� � ŷ� � +⇧ + ⇤yn � ŷn �
= ⇤y� � �̂� � �̂�x� � + ⇤y� � �̂� � �̂�x� � +⇧ + ⇤yn � �̂� � �̂�xn � .

The OLS coe�cient estimates are defined as the minimizers of the RSS; one can
show (using calculus) that these estimates are

�̂
OLS
� =

<n
i=�(xi � x)(yi � y)
<n

i=�(xi � x)� and �̂
OLS
� = y � �̂

OLS
� x (�)

where x  �
n <n

i=� xi and y  �
n <n

i=� yi are the sample means.
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Estimation – iii) Least squares illustrated

Figure �: Image by James et al. (����). The least squares fit for the regression of sales onto TV
advertising budget. The fit is found by minimizing the residual sum of squares (RSS). Each grey
line segment represents a residual.
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Estimation – iv) Properties of estimators

The OLS estimators �̂OLS� and �̂OLS� are unbiased estimators for the unknown parameters
�� and ��, respectively.

Mathematically, this means E⇤�̂OLS�  = �� and E⇤�̂OLS�  = ��.

Intuitively, this means that the estimator does not systematically over- or
under-estimate the true parameter.
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Idea of multiple linear regression



Idea

Multiple linear regression extends SLR by allowing more than one predictor.
In multiple linear regression, the response Y is modelled by

Y = �� + ��X� + ��X� + ��X� +⇧ + �pXp + ", (�)

where p " N is the number of predictors.
We interpret �j as the average e�ect on Y of a one unit increase in Xj, holding all
other predictors fixed. (Math?)

� ��

Y = f(X, . . ., Xp) + E
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Example

Figure �: Image by James et al. (����). The response depends on two predictors in a linear manner
as the least squares regression line is a plane (chosen by minimizing the sum of the squared
vertical distances between each observation (shown in red) and the plane).
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Estimation – Least squares estimators

As with SLR, our chosen estimators will be derived using the OLS method.
For each observed (xi, yi), where xi = (xi�, xi�, . . . , xip) " Rp, let

ŷi = �̂� + �̂�xi� +⇧ + �̂pxip (�)

be the prediction for Y based on the ith value of X.
Any vector ⇤�̂�, �̂�, . . . , �̂p of estimators induces a residual sum of squares (RSS):

RSS⇤�̂�, �̂�, . . . , �̂p 
n
=
i=�
e�i

=
n
=
i=�

⇤yi � ŷi �

=
n
=
i=�

⇧yi � ⌫�̂� + �̂�xi� +⇧ + �̂pxip�↵
�

The OLS coe�cient estimates �̂OLS� , �̂OLS� , . . . , �̂OLSp are defined as the minimizers of
the RSS; closed-form expressions can be obtained by calculus. (Without matrix
algebra, these expressions can be scary to look at.)
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Idea of polynomial regression



Idea

Polynomial regression extends SLR by allowing sums of predictors raised by powers.
The response Y is modelled using an order-d polynomial of the predictor X�:

Y = �� + ��X� + ��X�� + ��X�� +⇧ + �dXd� + ". (�)

The order/degree d describes the flexibility of the model.
As with SLR, our chosen estimators will be derived using the OLS method.

�� ��

-

-



Example �: A non-linear function

Figure �: Image by James et al. (����), based on the Income data set in R. The red dots are the
observed values of income in tens of thousand dollars and years of education for ��
individuals.
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Example �: degree-� polynomial

Figure �: Image by James et al. (����). The solid blue curve is a degree-� polynomial of wage (in
thousands of dollars) as a function of age, fit by least squares.

�� ��



Example �: Polynomial regression with two predictors

Figure �: Image by James et al. (����), based on the Income data set in R. The income is displayed
as a function of years of education and seniority, where linearity does not seem
appropriate. It might be reasonable to do polynomial regression with two predictors.
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