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Overview

Based on Chapter � of ISL book James et al. (����).
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Idea

Recall distinction between test error rate and training error rate of an estimator f̂ .
Want to avoid overfitting and systematic bias (bias-variance tradeo�)
f̂ ’s predictive ability can be quantified by the population test error

E error ⇥Y, f̂(X)�⇢ (�)

which we typically cannot directly calculate in practice because the entire
population is typically unknown or inaccessible.
The population test error (�) can be estimated by the empirical test error

�
m

m
=
i=�
error ⇥yn+i, f̂(xn+i)� (�)

Choose estimator that produces smallest empirical test error (�).
Evaluating an estimator’s performance is known as model assessment.
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Idea

However, a designated test set is typically not available.
How to estimate test error (�) in such cases?
Can instead train the estimator on a subset of the available data, then assess
performance on the unused data.
Also helps to select proper level of flexibility for a model; process known as model
selection.

For now we consider only regression (classification is similar).
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Validation set approach



Validation set approach

Randomly split the available data in two sets of the same size: a training set and a
validation set (or hold-out set).

Procedure of the validation set approach:
�. Randomly split the available data in two sets of the same size.
�. Fit the model on the training set.
�. Use the validation set to assess the performance of the fit (e.g., MSE)

Example
We want to do linear regression given the data set

(x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��),(x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��).
We split the whole data set into two groups with three elements each.

� set.seed(��) � allows these "random" numbers to be reproduced later
� n �- �
� train_inds �- sample(n, n/�) � � � �
� valid_inds �- (�:n)[-train_inds] � � � �

� Training set: (x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��).
� Validation set: (x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��).
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Validation set approach

Conceptually simple and easy to implement, but two major drawbacks:
�. The validation estimate of the test error rate highly depends on the values in the
validation set.

Figure �: Image by James et al. (����) using Auto data set of validation errors from predicting
mpg using polynomial functions of horsepower. Left: one random split. Right: �� random
splits, illustrating variability in the estimated test MSE.

�. Statistical methods tend to perform worse if trained on half of the whole data set
compared to using the whole data set.
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Leave-one-out cross validation approach



LOOCV (idea)

Leave-one-out cross validation (LOOCV): one data point for the validation set, and the
remaining n � � data points for the training set.

Start by leaving (x�, y�) out, train our model on (x�, y�), . . . , (xn, yn), and predict y�
by ŷ� based on the trained model, and calculate MSE�.
MSE� is based on a single observation (x�, y�), making it highly variable and hence
a poor estimate for the test error.
Thus we repeat the LOOCV by leaving out (x�, y�), then (x�, y�), etc.

Figure �: Image by James et al. (����).

� ��
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LOOCV (algorithm)

Procedure of the LOOCV, given the data (x�, y�), . . . , (xn, yn)⇥
�st step:
Z Leave (x�, y�) out, and use it as validation set.
Z Derive an estimator f̂� based on the training set (x�, y�), . . . , (xn, yn).
Z Calculate MSE�  (y� � ŷ�)�, where ŷ� = f̂�(x�).

⌃
nth step:
Z Leave (xn, yn) out, and use it as validation set.
Z Derive an estimator f̂n based on the training set (x�, y�), . . . , (xn��, yn��).
Z Calculate MSEn  (yn � ŷn)� where ŷn = f̂n(xn).(n + �)st step: Calculate the LOOCV estimate for the test MSE, namely

CV(n) = �
n

n
=
i=�
MSEi.
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W

L
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LOOCV (example)

Example: estimate test MSE for linear regression using LOOCV.
Data set (x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��), so n = �.
�. Leave out (x�, y�) = (�, ��).
Train f̂� on (x�, y�) = (�, ��), (x�, y�) = (�, ��) º f̂�(x) = ��x � ��.
As f̂�(�) = ŷ� = ��, get MSE� = (y� � ŷ�)� = (�� � ��)� = ���.

�. Leave out (x�, y�) = (�, ��).
Train f̂� on (x�, y�) = (�, ��), (x�, y�) = (�, ��) º f̂�(x) = ��x � ���.
As f̂�(�) = ŷ� = ��, get MSE� = (y� � ŷ�)� = (�� � ��)� = ���.

�. Leave out (x�, y�) = (�, ��).
Train f̂� on (x�, y�) = (�, ��), (x�, y�) = (�, ��) º f̂�(x) = ��x.
As f̂�(�) = ŷ� = ��, get MSE� = (y� � ŷ�)� = (�� � ��)� = ���.

Thus the test-MSE estimate for linear regression is

CV(�) = (��� + ��� + ���)/� = ���.
We could also compute CV(�) for a quadratic fit, and then choose the model — linear fit
vs quadratic fit — that produces the smaller CV(�) value.
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LOOCV (pros and cons)

Pros:
n� � training data points; thus LOOCV tends not to overestimate the test error rate
(compared to validation set approach).
In LOOCV each data point is left out exactly once, so data splits are not random.
LOOCV is a general method that can be used for many statistical learning methods.

Cons: LOOCV can computationally be very expensive since n estimators are fit.
Exception: with least squares linear or polynomial regression, the cost of LOOCV is
(amazingly!) the same as that of a single model fit:

CV(n) = �
n

n
=
i=�

⌅yi � ŷi� � hi
⌦�

where the leverage hi is defined in the textbook (don’t need to remember this for
HW/exams).
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k-fold CV (idea)

k-fold CV randomly splits the given data with n elements in k groups (folds) of
approximately equal size, by leaving the first fold out as a validation set, using the
remaining k � � folds as a training set, and repeating the procedure k times.

Could do: permute indices �, �, . . . ,n, then partition into k folds.

Figure �: Image by James et al. (����). Here we chose to use k = �.
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Step 1 - -> MSEI

Step 2
->> -> MSEz

Step 3
-> -MSE3

Step 4
-> -> MSE4

step 5
->> -> MSE5



k-fold CV (procedure)

Procedure of the k-fold CV, given the data (x�, y�), . . . , (xn, yn)⇥
�st step: Randomly split the given data in k folds (k is predefined).
�st step:
Z Leave the �st fold out, and use it as validation set.
Z Derive an estimator f̂ based on the remaining k � � folds.
Z Calculate MSE� based on the �st left out fold (if n = ��� and k = �, so we have k = � folds

with n/k = �� elements each, then with I� denoting the set of the indices of all elements
in the first fold (e.g. I� = {�, �, �, ��, ��, ��, . . . , ���}), we have MSE� = �

n/k <i"I�(yi � ŷi)�).
⌃
kth step:
Z Leave the kth fold out, and use it as validation set.
Z Derive an estimator f̂ based on the remaining k � � folds.
Z Calculate MSEk based on the kth left out fold.(k + �)st step: Calculate the k-fold CV estimate for the test MSE, namely

CV(k) = �
k

k
=
i=�
MSEi . (�)
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k-fold CV (comments)

k-fold CV generalizes LOOCV (k = n), but often use k = � or k = �� in practice.
If k < n, then k-fold CV is less computationally expensive than LOOCV.
Another advantage of k-fold CV involves bias-variance trade-o�.
Z Two sources of variability: (�) random data split and (�) data from unknown distribution

Figure �: Image by James et al. (����) using single Auto data set of validation errors
from predicting mpg using polynomial functions of horsepower.

Z LOOCV has smallest bias compared to k-fold CV for any other k; gives approximately
unbiased estimates of the test error since each training set has (n � �) observations.

Z LOOCV also has the largest variance; because the n fitted models are trained on almost
identical data sets, their outputs are highly positively correlated, so the variance does
not lessen much when averaging over the n fitted models.
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Final comments



Model assessment vs model selection

Without the true test MSE, it is di�cult to assess the CV estimate.
The true test MSE can be computed for simulated data.

Figure �: Image by James et al. (����). Each panel corresponds to one of three simulated data sets;
true test MSE (blue), LOOCV estimate (black dashed), and ��-fold CV estimate (orange). Cross
indicates minimum of MSE curve.

Select flexibility level that produces smallest estimated test error (the crosses).
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Comments on previous figure

All panels:
The ��-fold CV estimate is pretty close to the LOOCV estimate (and is
computationally faster).
If there is a range of flexibility values that produce roughly the smallest estimated
test MSE, we probably want to choose the smallest value in this “good range” (this
will typically enable easier inference).

Left panel:
Both CV estimates seem to underestimate the true test MSE.
For both CV approaches, any flexibility between � and �� produces roughly the
smallest estimated test MSE.

Center panel:
Both CV estimates seem to roughly match the true test MSE for flexibility values
smaller than ��.
For both CV approaches, any flexibility smaller than � produces roughly the
smallest estimated test MSE.

Right panel:
Both CV estimates seem to very closely match the true test MSE for flexibility
values between � and ��.
For both CV approaches, any flexibility between � and �� produces roughly the
smallest estimated test MSE.
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Classification

Cross-validation can also be used for qualitative responses (in classification).
The LOOCV error rate in the classification setting takes the form

CV(n) = �
n

n
=
i=�
Erri , (�)

where
Erri  I�yi j ŷi⌥

is � if yi j ŷi (obs i is misclassified), and � if yi = ŷi (obs i is assigned to correct
class).
Bias-variance tradeo� again in Figures �.� and �.� of James et al. (����).
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