Sec 6: Main concepts of statistical learning
STA 35C - Statistical Data Science Il

Instructor: Akira Horiguchi

Fall Quarter 2025 (Sep 24 - Dec 12)
MWEF, 12:10 PM - 1:00 PM, Olson 158
University of California, Davis



Based on Chapters 1 and 2 of ISL book James et al. (2021).
Motivation
Unsupervised learning

Supervised learning
m Learning goals and tasks
m Choosing a model
m Assessing model accuracy
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Motivation




How does advertising affect sales? (supervised learning)
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Image by James et al. (2021), based on the Advertising data set in R. The plot diplays
sales in thousands of units depending on the input TV, radio and newspaper (advertising)

budgets, in thousand dollars, for 200 different marktes.
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Who will default on credit card payment? (supervised learning)
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Image by James et al. (2021). The Default data set. The annual incomes and monthly
credit card balances of a number of individuals. Orange +s indicate individuals who defaulted on
their credit card payments; blue circles indicate individuals who did not default.



Flow cytometry (unsupervised learning)
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Image by Horiguchi et al. (2024) -
https://projecteuclid.org/journals/bayesian-analysis/advance-publication/
A-Tree-Perspective-on-Stick-Breaking-Models-in-Covariate-Dependent/10.
1214/24-BA1462. full
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Statistical learning: supervised vs unsupervised

Statistical learning refers to a vast set of tools for understanding data.

m Supervised statistical learning: predict or estimate an output based on one or
more inputs. (STA 142A)

m Unsupervised statistical learning: learn relationship or structure among
observations. (STA 142B)

m (Are there outputs to “supervise” the learning task?)



Unsupervised learning




Overview

Recall: learn relationship or structure among observations. Example tasks:

m Dimension reduction: derive a low-dimensional set of features from
higher-dimensional observations X, ..., X,.

» Uses: plotting 2-d representations of higher-dimensional data, regression.
» Principal components analysis is a popular approach.

m Cluster analysis: partition observations X;, ..., X, into distinct groups.
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Image by James et al. (2021). Clustering in a data set involving three groups.



Supervised learning




Supervised learning

Learning goals and tasks



Non-linear regression
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Years of Education

Image by James et al. (2021), based on the Income data set in R. The red dots are the
observed values of income in tens of thousand dollars and years of education for 30
individuals.



A three-dimensional plot

Image by James et al. (2021), based on the Income data set in R. The income is displayed
as a function of years of educationand seniority.



Combined plots

g g g v
(3] [ ™
P
g g g i
o 9 o 9 o 9 —
o W o W o W o TR
© © H
s g g | 14
.
!

o b4
[

I
5

o
T
4

50 100
|
100
|
50 100
I
- F‘ﬂ]“*"

+
20 40 60 80 2003 2006 2009 2

Age Year Education Level

Image by James et al. (2021), based on the Wage data set in R. The wage is displayed as a
function of age, year and education.



Recall: predict or estimate an output based on one or more inputs.

m Input variables are called predictors, independent variables, or features; denoted
by X, and X;, X,, X; etc. if there is more than one.

[ Out’put variable is called response or dependent variable; denoted by Y.
_—— -

Example: In Figure 1, the predictors are TV, radio, newspaper, denoted by X;, X, X;,
respectively, and the response is sales, denoted by Y.
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Suppose we observe a numeric response Y and p predictors X,, ..., X,.
m We assume that there is some relationship between Y and X = (X;,...,X,):
S eptilan” -
Y=f(X)+2 (1)
-
> f denotes a fixed but unknown function of X, ..., X,.

» cisarandom error term, which is independent ofX’ with E(¢) = o.
m Two main reasons to estimate f: prediction and inference.



Prediction - i) Idea

Goal: predict response Y at a set of inputs X.
m If X is available, because the error term averages to zero, we can predict Y using

\?=_f(X), )

where f denotes the estimate for f, and Y the resulting prediction for Y.
m For prediction tasks, f is often treated as a black box - does it accurately predict Y?

Example: The blue surface in Figure 6 is an estimate f for the unknown function f
describing the relationship of the predictors years of educationand seniority
to the response income:

income = f(years of education, seniority).



Prediction - ii) Accuracy

The accuracy of Y for predicting Y depends on reducible error and irreducible error.
m For a fixed estimator f and X, we get

3 [{y - vﬂ - F [{foo —F) + sﬂ
- €| o0 ~foof| + e[=] + 2£[froa—fone]
= ffoo-foof + vare) .

K irreducible error
reducible error

nyL
E[f-%] 2 O+ vel®
m A more appropriate learning technique might reduce the reducible error.

m irreducible error comes entirely from the inherent observation noise ¢;
independent of how we estimate f.

» Even if we would estimate f perfectly, i.e. ¥ = f(X), there is still some irreducible
prediction error from g, since Y = f(X) + e.
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Inference

Goal: learn relationship between response Y and inputs X;, ..., X,.

m One may want to answer:
» Which predictors are associated with the response?
» What is the relationship between the response and each predictor?
> Can we use a linear equation to describe the relationship between X;, ..., X, to Y,
or is there a more complex relationship?
m Knowing more about f allows us to ask questions about Y, such as:

> What value of (X, ...,X,) maximizes Y?
» How much is Y affected by each predictor X;?
E.g., in Figure 1 we might have

B 60% of Var(sales) can be explained by TV budget,

B 30% of Var(sales) can be explained by Radio budget,

W 8% of Var(sales) can be explained by Newspaper budget,

B remaining 2% can be explained by X, X5, ..., X,
P These questions can be difficult to answer if f is highly non-lineart
» https://www.climateinteractive.org/en-roads/
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Regression vs. classification

Describe problem based on whether the response Y is quantitative or qualitative.
m quantitative (numeric). E.g., age, height, income, house value, stock price.

m qualitative/categorical (“discrete” - value is one of K classes). E.g., marital status
(married or not), brand of product purchased (brand A, B, or C).

Regression vs classification
m Problems w/ a quantitative response: usually referred to as regression problems.
m Problems w/ a qualitative response: usually referred to as classification problems.

Further notes:
m Distinction is not always crisp; is logistic regression classification or regression?
m Whether the predictors X;, ..., X, are quantitative or qualitative is less important.
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Example of classification — K-nearest neighbors
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Image by James et al. (2021). Classification using the K-nearest neighbor approach with
K = 3. Left: We assign a new observation (this is the "x") to the class for which most of three
neighbors of "x" belong to. Right: A decision line/region for how we would assign a new element
for K = 3 if they would fall in a certain indicated region.
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Supervised learning

Choosing a model



Estimate f

Supervised learning: estimate unknown function f using n observed data points

(X17Y1)7 (X27Y2)7 tet (Xn»)/n)

where x; = (Xi1, Xia, ...7x,-,,)T € RP.
m We index the observatioﬁ?by 18 00 analik
m We index the inputs/predictors by j =1,...,p.
m Let x; € R represent the value of the jth predictor for the ith observation.

] Letfe R represent the response variable for the ith observation.
— Value



Choosing a model

A statistical learning method will use the data to estimate the unknown f.
m l.e, compute a function f such that Y f(X) for any observed (X, Y).
m What kind of function |sf allowed to be? Dictated by our chosen learning method.
m Examples: linear model _hwu‘\: F"’ *P'\C‘

ﬁ flm(X) = Bo + BiXa + BaXa + oo+ BpXp

or linear model plus two- way interactions

o °

, ”
f f,(X)+B XX + XX vt Bo 3 XXy + oo 4 Bpg pXpoiX
*’7’;. i s Caia e ba - i e

or quadratic model

FX) = fim(X) + 8,6 + B, zx + ot By Xp

— e—— . — -——
Pros and cons to enlarging the class of possible functions that we allow f to be:
m Advantage: larger class of possible f = more likely that f better estimates f.
m Disadvantage: requires a large number of observations to accurately estimate f.
m Disadvantage: inference is often more difficult.



Choosing a model: too much flexibility (1-D)

Consider polynomial regression
L p/wa&«fsvfa Ordey 4 polyromicl ey
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Interpolation theorem: Any n bivariate data points (x;, y;) (where x;s are distinct) can be
interpolated by a polynomial of order at most n — 1.

https://en.wikipedia.org/wiki/Polynomial_interpolation

19 34



Choosing a model: too much flexibility (2-D)
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Image by James et al. (2021), based on the Income data set in R. “A rough thin-plate spline
fit to the Income data from Figure 2.3. This fit makes zero errors on the training data.”
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Choosing a model: interpretability vs flexibility

Are we more interested in inference or prediction?

m Simpler models typically are easier to interpret and make inference on.
m Flexible models might more accurately predict Y but can be less interpretable.

S _| Subset Selection
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Least Squares
z l
:Qg Generalized Additive Models
° J Trees
o
E %
£
Bagging, Boosting
Support Vector Machines
§ — Deep Learning
T

T

Low High

Flexibility

Image by James et al. (2021). No method dominates all other methods.
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Choosing a model: final comments

(Language: “make an assumption about the functional form of ")
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Supervised learning

Assessing model accuracy



How do we assess model accuracy

Need to establish an error metric. Different for regression vs classification.
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Regression: idea

In regression, most commonly use the mean squared error (MSE)Z
—"ML Pﬂ-o\ iched

n

MSE = Z( ~F) ). (3)
e J

for n data points (x,, 1), ..., (Xn, Vn).
m MSE computed on the training data is called the training MSE, denoted by MSE;,i,.

m We want to choose an estimatorf that produces a small MSE on data it wasn’t
trained on:

m

MSEtest - Z (ynﬂ - Xn+| )2 ) (4)

for m data points (X1, Yns1)s - - - s (Xnam, Ynem ). We call (4) the test MSE.
Emphasize: set of training data should be disjoint from set of test data.
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Regression: a sketch
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Image by James et al. (2021). Left: Data simulated from f (in black). Three estimates for f:
linear regression (in orange), and two smoothing splines (in blue and green). Right: Training MSE
(in grey), test MSE (in red), and minimum possible test MSE over all methods (dashed line). The
squares represent the three fits from the left panel.
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Regression: comments on the sketch

m The dashed line in Figure 8 indicates the irreducible error (this is Var(e)) which is
the lowest achievable test MSE among all possible methods.

m Training MSE always decreases as we increase model flexibility.

m The U-shape in the test MSE in Figure 8 indicates that it decreases up to a certain
amount of flexibility, but gets worse afterwards.

m When a given method yields a small training MSE, but a large test MSE, we say that
the data points are overfitted.
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Regression: another sketch
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Image by James et al. (2021). Details are same as in previous figure, but using a different
true f that is much closer to linear. In this setting, linear regression provides a very good fit to the
data. U-shape is barely noticeable.
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Regression: Bias-variance trade-off

squorgd bias

[ -F\u;(b.’\.‘ﬁ
U-shape results from two competing properties: (squared) bias and variance.
m Consider the expected test MSE at a new test data point (x,y).
This is the average test MSE obtained if we repeatedly estimate f over infinitely
many training data sets drayn from some underlying data distribution.

m The expected test MSE ﬁtofx,y) can always be decomposed into the sum:
~ 2 f‘ﬂﬁ & 2%
el{y-Fool | = var(foo)'+ freo-effoo]) s vare, @
> —1
) + Q + Nor(£)

» var (f( )) is the amount f would change by using different training data sets.

> {f(x) - E[f(x)]} is the squared bias of f(x).

W Squared bias can be interpreted as the error introduced by approximating f using the given
model assumptions (which often do not capture the full complexity of f).

> Var(e) is the variance of the error term ¢ (this is a property of the data, not of f).
B The expected test MSE can never be below Var(e). (Dotted horiz line in prev two figures.)
(5) is called a bias-variance trade-off. As a general rule, as model flexibility increases,
the variance will increase and the (squared) bias will decrease.
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Classification: training and test error rate

In classification, we quantify accuracy of f using the training error rate,

Errtrain=%zl(yi¢féxi))7 (6)

m Indicator variable R
1 ify; # f(xi)
o ifyi = f(x;)

m Hence the training error rate is the mean number of wrong classifications.

10 Fon) - {

A good classifier, however, produces a small test error rate

1 & &
Erfies; = m Z I (yn+i * f(Xn+i)) ) (7)
i=1
where (Xp41, Yni1)s - - - » (Xnems Ynem ), With m € N, are test data. Bias-variance trade-off

also appears in classification, as we will see.
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Classification: Bayes classifier as a (theoretical) benchmark

The Bayes classifier assigns a predictor value x to the class

argmaxP(Y = j|X = x) (8)
j

_

where P(Y=j|X=x) is the conditional probability that a point whose predictor value is
x belongs to class j. E.g., predicting penguin species: Adelie, Chinstrap, or Gentoo.
- 0.1 Boyer clecdd Ger

- \\\l.- x = ‘1 O*\>
P ( ¥ L ! 0 S & Pr:,o\\‘u\-s C\«?Ash-»?
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m This classifier assigns each x to the most likely class given its predictor.

m It turns out that the Bayes classifier produces the lowest possible test error rate,
called the Bayes error rate — analogous to the irreducible error discussed earlier.

m Can't compute the Bayes classifier if we don’t know the cond. distribution of Y|X.
m Approximate the Bayes classifier by estimating the conditional probs P(Y=j|X=x).I
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Classification: KNN - i) Idea

The K-nearest neighbor (KNN) classifier estimates P(Y = j|X = x) by
l—-—_—d

v 1 .
PYZiiX=x)=¢ ) 1i=)), (9)
ieNk(x)

where the set N (x) indexes the K € N nearest neighbors of x.
m Ultimately, the KNN classifier will assign x to the majority class in N(x).

KNN: K=10

Image by James et al. (2021). The KNN decision boundary for K = 10 (black solid curve), and
the Bayes decision boundary (purple dashed curve).
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Classification: KNN - ii) Different K

KNN: K=1 KNN: K=100

Image by James et al. (2021). KNN decision boundaries (black solid curve) for K = 1and
K = 100, and the Bayes decision boundary (purple dashed curve). The K = 1 decision boundary is
too flexible, while the K = 100 boundary is not flexible enough.
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Classification: KNN - iii) Bias-variance trade-off
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Image by James et al. (2021). The KNN training error rate (blue) and test error rate (orange)
and the Bayes error rate (black horizontal dashed line). The jumpiness of the curves is due to the
small size of the training data set.
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General comments

We want to choose the method that produces the smallest test error.
m True regardless of regression or classification.
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