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A note on generating “random” numbers

How do sample() and rnorm(), for instance, really work?
Are the generated values really random? Technically, NO.
The generated values are based on a certain seed (a positive integer). The
seed is the ’starting point’ or an initial value. It is plugged into a certain
function/generator leading to our generated value.
Setting a seed (e.g. set.seed(23) in R) at the beginning of your code
will lead to the same sequence of “random” numbers. This helps to make
your “random” results more reproducible, which aids with debugging,
science replicability, etc. It is recommended that you do this.
I If you want a di�erent sequence of “random” numbers, replace 23 with your

favorite positive integer.

The generated values are called pseudo-random, so “almost random”, as
they appear to be random.
If the seed is not specified, it is usually based on milliseconds of the
computer’s current time. This helps make the numbers “more random.”

Further detail is outside the scope of this class.
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Section 3: Main concepts of statistical learning

Statistical learning



How does advertising affect sales? (supervised learning)

Figure 1: Image by James et al. (2021), based on the Advertising data set in R. The plot
diplays sales in thousands of units depending on the input TV, radio and newspaper
(advertising) budgets, in thousand dollars, for 200 di�erent marktes.
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Who will default on credit card payment? (supervised learning)

Figure 2: Image by James et al. (2021). The Default data set. The annual incomes and
monthly credit card balances of a number of individuals. Orange +s indicate individuals
who defaulted on their credit card payments; blue circles indicate individuals who did
not default.
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Flow cytometry (unsupervised learning)

Figure 3: Image by Horiguchi et al. (2024) – https://projecteuclid.org/journals/
bayesian-analysis/advance-publication/
A-Tree-Perspective-on-Stick-Breaking-Models-in-Covariate-Dependent/
10.1214/24-BA1462.full
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Statistical learning: supervised vs unsupervised

Statistical learning refers to a vast set of tools for understanding data.
These tools can be classified as supervised or unsupervised.
Supervised statistical learning: predict or estimate an output based on
one or more inputs. (STA 142A)
Unsupervised statistical learning: learn relationship or structure among
observations. (STA 142B)
(Are there outputs to “supervise” the learning task?)
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Section 3: Main concepts of statistical learning

Supervised learning



Non-linear regression

Figure 4: Image by James et al. (2021), based on the Income data set in R. The red dots
are the observed values of income in tens of thousand dollars and years of
education for 30 individuals.
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A three-dimensional plot

Figure 5: Image by James et al. (2021), based on the Income data set in R. The income is
displayed as a function of years of education and seniority.
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Combined plots

Figure 6: Image by James et al. (2021), based on the Wage data set in R. The wage is
displayed as a function of age, year and education.
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Some notation

Recall: predict or estimate an output based on one or more inputs.
Input variables are called predictors, independent variables, or features;
denoted by X, and X1, X2, X3 etc. if there is more than one.
Output variable is called response or dependent variable; denoted by Y.

Example: In Figure 1, the predictors are TV, radio, newspaper, denoted by
X1, X2, X3, respectively, and the response is sales, denoted by Y.
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Model

Suppose we observe a quantitative (i.e., numeric) response Y, and predictors
X1, . . . , Xp for some p ∈ N.

We assume that there is some relationship between the response Y and
the vector of predictors X = (X1, . . . , Xp), namely

Y = f (X) + ε. (1)

I f denotes a fixed but unknown function of X1, . . . , Xp.
I ε is a random error term, which is independent of X, with E(ε) = 0.

Two main reasons to estimate f : prediction and inference.
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Prediction – i) Idea

Goal: predict response Y at a set of inputs X.
If X is available, because the error term averages to zero, we can predict Y
using

Ŷ = f̂ (X), (2)

where f̂ denotes the estimate for f , and Ŷ the resulting prediction for Y.
For prediction tasks, f̂ is often treated as a black box – does it accurately
predict Y?

Example: The blue surface in Figure 5 is an estimate f̂ for the unknown function
f describing the relationship of the predictors years of education and
seniority to the response income:

̂income = f̂ (years of education, seniority).
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Prediction – ii) Accuracy

The accuracy of Ŷ as a prediction for Y depends on the reducible error and the
irreducible error.

If we interpret both the estimator f̂ and X as fixed so that the only
variability comes from ε, we get

E
(

Y − Ŷ
)2

= E
(

f (X)− f̂ (X) + ε
)2

= E
(

f (X)− f̂ (X)
)2
− 2E

(
(f (X)− f̂ (X))ε

)
+ E

(
ε2)

=
(

f (X)− f̂ (X)
)2

︸ ︷︷ ︸
reducible error

+ Var(ε)︸ ︷︷ ︸
irreducible error

.

The reducible error can be potentially reduced by using a more
appropriate learning technique to estimate f .
The irreducible error comes entirely from ε, and does not depend on how
we estimate f .
Even if we would estimate f perfectly, i.e. Ŷ = f (X), there is still some
irreducible prediction error from ε, since Y = f (X) + ε.
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Inference

Goal: learn relationship between response Y and inputs X1, . . . , Xp.
One may want to answer:
I Which predictors are associated with the response?
I What is the relationship between the response and each predictor?
I Can we use a linear equation to describe the relationship between X1, . . . , Xp

to Y, or is there a more complex relationship?
Knowing more about f allows us to ask questions about Y, such as:
I What value of (X1, . . . , Xp) maximizes Y?
I How much is Y a�ected by each predictor Xi?

E.g., in Figure 1 we might have
60% of Var(sales) can be explained by TV budget,
30% of Var(sales) can be explained by Radio budget,
8% of Var(sales) can be explained by Newspaper budget,
remaining 2% can be explained by X4, X5, . . . , Xp

I These questions can be di�cult to answer if f is highly non-linear!
I https://www.climateinteractive.org/en-roads/
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How to estimate f?

Supervised learning: estimate unknown function f using n observed data points

(x1, y1), (x2, y2), . . . , (xn, yn)

where xi = (xi1, xi2, ..., xip)
> ∈ Rp.

We index the observations by i = 1, . . . ,n.
We index the inputs/predictors by j = 1, . . . ,p.
Let xij ∈ R represent the value of the jth predictor for the ith observation.
Let yi ∈ R represent the response variable for the ith observation.
The n observed data points are called the training data because they will
train our method on how to estimate f .

A statistical learning method will use the training data to estimate unknown f .
I.e., compute a function f̂ such that Y ≈ f̂ (X) for any observed (X, Y).
What kind of function is our function estimate f̂ allowed to be?
Dictated by our chosen learning method (parametric vs non-parametric).
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Parametric methods

Parametric methods involve two steps:
1. Define what estimates f̂ of the function f are allowed to look like.

E.g., allow f̂ to be a linear function of X = (X1, . . . , Xp):

f̂ (X) = β0 + β1X1 + β2X2 + · · ·+ βpXp. (3)

2. Use the training data to fit/train the model. For the linear model (3), we
have to estimate the parameters β0, β1, . . . , βp so that Y ≈ f̂ (X).

Called parametric because f̂ is determined by finitely many parameters.
Advantage: Reduces the problem of estimating an arbitrary p-dimensional
function f to the easier problem of estimating only p + 1 parameters.
Disadvantage: The allowed form of f̂ likely will not match true form of f .
One could try to use more flexible models (however, this could lead to
overfitting the data, i.e. the models follows the errors too closely).
The left plot in Figure 1 estimates the function f by

f̂ (TV,Radio,Newspaper) = f̂ (TV) ≈ 6 +
1

20 X1. (4)

(Language: “make an assumption about the functional form of f ”)
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Non-parametric (or nonparametric) methods

Non-parametric methods: f̂ is determined by infinitely many parameters.
Misnomer: non-parametric 6= no parameters!
Advantage: more flexibility in what f̂ is allowed to be⇒ more likely that f̂
better estimates f .
Disadvantage: requires a large number of observations to accurately
estimate f .
Disadvantage: inference is often more di�cult.

Example: (next slide)
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Example – non-parametric

Figure 7: Image by James et al. (2021), based on the Income data set in R. “A rough
thin-plate spline fit to the Income data from Figure 2.3. This fit makes zero errors on the
training data.” Here the yellow surface need only be continuous.

Interpolation theorem: Any n bivariate data points (xi, yi) (where xis are
distinct) can be interpolated by a polynomial of order at most n− 1.
https://en.wikipedia.org/wiki/Polynomial_interpolation
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Choosing a model: interpretability vs flexibility

The choice of the model (e.g., model (1)) depends on whether we are interested
in prediction, inference, or a combination of both.

Simpler models typically are easier to interpret and make inference on.
More flexible models might more accurately predict Y but are often less
interpretable.
Example: Simple linear regression allows an intercept and a slope (see
Figure 1) compared to a quadratic/cubic/polynomial regression where
even more parameters can be chosen (see Figure 5).

When choosing a statistical model for the data, there is usually a trade-o�
between interpretability and flexibility.

One has to choose where to be on this spectrum (see next slide).
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Choosing a model: interpretability vs flexibility

Figure 8: Image by James et al. (2021). “A representation of the tradeo� between
flexibility and interpretability, using di�erent statistical learning methods.”
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Regression vs. classification – Reasoning

Variables can be treated as:
quantitative (numeric). E.g., age, height, income, house value, stock price.
qualitative/categorical (“discrete” – value is one of K classes). E.g., marital
status (married or not), brand of product purchased (brand A, B, or C).

One tends to select the statistical learning methods on the basis whether the
response Y is quantitative or qualitative.

Whether the predictors are quantitative or qualitative is less important.
Problems with a quantitative response are usually referred to as
regression problems.
Problems with a qualitative response are usually referred to as
classification problems.
I Techniques include logistic regression and K-nearest neighbors (see Figure 9).

The distinction is not always crisp; logistic regression can be thought of as
either classification or regression.
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Example of classification – K-nearest neighbors

Figure 9: Image by James et al. (2021). Classification using the K-nearest neighbor
approach with K = 3. Left: We assign a new observation (this is the "x") to the class for
which most of three neighbors of "x" belong to. Right: A decision line/region how we
would assign a new element for K = 3 if they would fall in a certain indicated region.
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Section 3: Main concepts of statistical learning

Assessing model accuracy



General comments

No method dominates all other methods – some methods work well on
one particular data setting, but worse on another one.
(Some methods perform poorly across all data settings, so we don’t
spend time discussing them.)
In order to find an appropriate model, we have to analyze its quality of fit,
establish a comparable measure (if possible), and choose the model
which gives us the smallest approximation errors (in some sense).
Also need to distinguish between regression and classification.
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Mean squared error (MSE) – i) Idea

In regression, most commonly used measure is the mean squared error (MSE):

MSE =
1
n

n∑
i=1

(
yi − f̂ (xi)

)2
, (5)

where (x1, y1), . . . , (xn, yn), with n ∈ N, are data points.
If MSE is computed on the training data, we call it the training MSE,
denoted by MSEtrain.
We’d like our estimator f̂ to have a low MSE on data it wasn’t trained on:

MSEtest =
1
m

m∑
i=1

(
yn+i − f̂ (xn+i)

)2
, (6)

where (xn+1, yn+1), . . . , (xn+m, yn+m), with m ∈ N, are data points on which
we can test our estimator f̂ . We call (6) the test MSE.

24 35



Mean squared error (MSE) – ii) Procedure

Conceptually, we can summarize the procedure to find a good estimator f̂ by:
1. Find the estimator f̂ of the assumed model (for instance linear model) by

minimizing MSEtrain.

2. i) If we don’t have test data, select the model for which f̂ gives the smallest
MSEtrain. (In the case that there is no test data, the procedure ends here).

ii) If we have test data, calculate MSEtest by plugging in the derived estimator f̂
minimizing MSEtrain from each model assumption.

3. Select the model (and thus the related f̂ ) leading to the smallest MSEtest.
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Mean squared error (MSE) – iii) A sketch

Figure 10: Image by James et al. (2021). Left: Data simulated from f (in black). Three
estimates for f : Linear regression (in orange), and two smoothing splines (in blue and
green). Right: Training MSE (in grey), test MSE (in red), and minimum possible test MSE
over all methods (dashed line). The squares represent the three fits from the left panel.
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Mean squared error (MSE) – iv) Comments on the sketch

The dashed line in Figure 8 indicates the irreducible error (this is Var(ε))
which is the lowest achievable test MSE among all possible methods.
Training MSE always decreases as we increase model flexibility.
The U-shape in the test MSE in Figure 8 indicates that it decreases up to a
certain amount of flexibility, but gets worse afterwards.
When a given method yields a small training MSE, but a large test MSE, we
say that the data points are overfitted.
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Mean squared error (MSE) – v) Another sketch

Figure 11: Image by James et al. (2021). Details are same as in previous figure, but using a
di�erent true f that is much closer to linear. In this setting, linear regression provides a
very good fit to the data. U-shape is barely noticeable.
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Bias-variance trade-off

The U-shape observed in the test MSE curves turns out to be the result of two
competing properties of statistical learning methods.

Consider the expected test MSE at a new test data point (x, y). This is the
average test MSE obtained if we repeatedly estimate f over infinitely
many training data sets. (Training data is drawn from some underlying
data distribution.)
The expected test MSE at (x, y) can always be decomposed into the sum:

E
(

y − f̂ (x)
)2

= Var
(

f̂ (x)
)
+
[
Bias

(
f̂ (x)

)]2
+ Var(ε). (7)

I Var(f̂(x)) is the amount f̂ would change by using di�erent training data sets.
I

[
Bias(f̂(x))

]2
is the squared bias of f̂ (x), where Bias(f̂ (x)) := f(x)− E(f̂(x)).

Squared bias can be interpreted as the error introduced by approximating f using
the given model assumptions (which often do not capture the full complexity of f ).

I Var(ε) is the variance of the error term ε.

The expected test MSE can never be below Var(ε), because the variance
and the squared bias are non-negative.

(7) is a bias-variance trade-o�. As a general rule, as model flexibility increases,
the variance will increase and the (squared) bias will decrease.
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The training and test error rate

In classification, we quantify accuracy of f̂ using the training error rate,

Errtrain =
1
n

n∑
i=1

I
(

yi 6= f̂ (xi)
)
, (8)

where (x1, y1), . . . , (xn, yn), with n ∈ N, are training data.

I
(

yi 6= f̂ (xi)
)

is the indicator variable that equals 1 if yi 6= f̂ (xi) and equals

0 if yi = f̂ (xi).
As f̂ (xi) is the predicted class given the observation xi, the training error
rate counts the average number of wrong classifications.
A good classifier, however, produces a small test error rate

Errtest =
1
m

m∑
i=1

I
(

yn+i 6= f̂ (xn+i)
)
, (9)

where (xn+1, yn+1), . . . , (xn+m, yn+m), with m ∈ N, are test data.
Bias-variance trade-o� also appears in classification, as we will see.
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The Bayes classifier

The test error rate is on average minimized, by a classifier that assigns each
observation to the most likely class given its predictor.

In other words, such a classifier assigns a test observation x to the class

argmax
j

P(Y = j|X = x). (10)

This classifier is called the Bayes classifier.
Special case: if Y must belong to one of only two classes, we predict class
1 if P(Y = 1|X = x) > 0.5, and class 2 otherwise.
The Bayes classifier produces the lowest possible test error rate, called
the Bayes error rate — analogous to the irreducible error discussed earlier.
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KNN – i) Idea

In theory, we would always like to predict using the Bayes classifier, but in
practice we don’t know the conditional distribution of Y given X.
Many approaches attempt to estimate the conditional probabilities.
The K-nearest neighbor (KNN) classifier estimates the Bayes classifier by
counting the K ∈ N closest values of x in a neighborhood N

̂P(Y = j|X = x) = 1
K
∑
i∈N

I (yi = j) , (11)

and assigns x to the class j with the highest probability.
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KNN – ii) An example

Figure 12: Image by James et al. (2021). The KNN decision boundary for K = 10 (in black),
and the Bayes decision boundary (in purple).
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KNN – iii) Different K

Figure 13: Image by James et al. (2021). KNN decision boundaries (in black) for K = 1 and
K = 100, and the Bayes decision boundary (in purple). With K = 1, the decision boundary
is overly flexible, while with K = 100 it is not su�ciently flexible.
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KNN – iv) Bias-variance trade-off

Figure 14: Image by James et al. (2021). The KNN training error rate (in blue) and test error
rate (in orange) and the Bayes error rate (in black). The jumpiness of the curves is due to
the small size of the training data set.
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Section 3: Main concepts of statistical learning

Unsupervised learning



Overview

Recall: learn relationship or structure among observations. Example tasks:
Dimension reduction: derive a low-dimensional set of features from
higher-dimensional observations X1, . . . , Xn.
I Uses: plotting 2-d representations of higher-dimensional data, regression.
I Principal components analysis is a popular approach.

Cluster analysis: partition observations X1, . . . , Xn into distinct groups.

Figure 15: Image by James et al. (2021). Clustering in a data set involving three groups.
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