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Comments

Supervised data: predictors X1, . . . , Xp and a response Y measured on n
observations.

Unsupervised data: predictors X1, . . . , Xp measured on n observations, but no
response.

Still useful to analyze the association between the predictors X1, . . . , Xp.
Often performed as part of an exploratory data analysis.
Harder to assess the results from an unsupervised learning method;
there is no “truth” to compare to.
(In contrast, in supervised learning the “truth” is the response Y.)

Common unsupervised learning tasks: clustering and dimension reduction.
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Overview

Based on Chapter 12 of ISL book James et al. (2021).
For more R code examples, see R Markdown files in
https://www.statlearning.com/resources-second-edition

Section 9: Unsupervised learning
K-means clustering
Principal component analysis (PCA)
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Unsupervised learning

K-means clustering



Clustering

Task: find homogeneous subgroups (i.e., clusters) among observations.
"Market segmentation" aims to identify subgroups of people who might be
more receptive to certain kind of advertisements/products etc. (TikTok)
Flow cytometry: group cells based on their biomarker values.

Figure 1: From James et al. (2021).
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If we index the n observations by the integers 1, 2, 3, . . . ,n, then

cluster n observations⇐⇒ cluster the integers 1, 2, 3, . . . ,n

In other words, we want to partition the set {1, 2, 3, . . . ,n}.

Definition (Cluster)
Clusters are sets C1, . . . , CK with the following features:

C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . ,n} (each obsn belongs to at least one cluster);
Ck ∩ Cl = ∅ for all k 6= l (no observation belongs to more than one cluster).
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How to select “best” clustering of given data?
Two common techniques: K-means clustering and hierarchical clustering
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Idea of K-means clustering

K-means clustering partitions observations into K non-overlapping clusters.
The user chooses the value of K before performing K-means clustering.
"Good" clustering: if the obsns in each cluster are close to each other,
i.e., if the within-cluster variation is relatively small.
Several ways to define within-cluster variation. The most common choice
involves the squared Euclidian distance (common distance of vectors).
For obsns x1, . . . , xn ∈ R, within-cluster variation of a cluster C defined by

W(C) := 1
#C

∑
i,i′∈C

(xi − xi′)
2 . (1)

For obsns x1, . . . , xn ∈ Rp, within-cluster variation of a cluster C defined by

W(C) := 1
#C

∑
i,i′∈C

‖xi − xi′‖2
2 =

1
#C

∑
i,i′∈C

p∑
j=1

(
xij − xi′j

)2
. (2)

We want to find clusters C1, . . . , CK that minimize
∑K

k=1 W(Ck).
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Goal: We want to find clusters C1, . . . , CK that minimize
∑K

k=1 W(Ck).
This minimization problem is very di�cult to solve precisely, since there
are almost Kn ways to partition n observations into K clusters.
The following algorithm can be shown to provide a local optimum.
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Algorithm and comments

K-means algorithm:
1. Randomly assign a number from 1 to K (K is pre-defined) to each obsn.
2. Iterate steps (a) and (b) until the cluster assignments stop changing:

(a) For each cluster, compute cluster centroid (mean of all obsns in the cluster).
(b) Assign each observation to the cluster whose centroid is the closest.

Example: draw & compute the centroid of the cluster {(1, 2), (2, 1), (3, 2), (1,0)}

Comments:
K-means clustering derives its name from the fact that the cluster
centroids are computed as the mean of each cluster’s observations.
Step 2 can be shown to never increase

∑K
k=1 W(Ck) — will reduce it until at

local minimum. Value of obtained local minimum will depend on initial
(random) cluster assignment in Step 1.
To reduce prob. of choosing a “bad” local minimum, one should run the
algorithm many times, and then choose clustering w/smallest

∑K
k=1 W(Ck).
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Simulation of K-means clustering

Figure 2: From James et al. (2021). 3-means clustering and 10 iterations.
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Issues in clustering

Issues in clustering
Should observations first be standardized in some way? E.g. should
variables be scaled to have standard deviation one?
Hierarchical clustering:
I What dissimilarity measure should be used?
I What type of linkage should be used?
I Where shall the dendogram be cut (i.e., how many clusters do we need/want)?

K-means clustering: how many clusters should we look for?

It is challenging to validate obtained clusters
Outside scope of class; more details found in “sequel” book
The Elements of Statistical Learning
In practice, try several di�erent choices, and look for the one with the
most useful or interpretable solution.
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Unsupervised learning

Principal component analysis (PCA)



Dimension reduction

Suppose we have n obsns on a set of p features X1, X2, . . . , Xp.
That is, suppose we have n data points
(x11, x12, . . . , x1p)

>, (x21, x22, . . . , x2p)
>, . . . , (xn1, xn2, . . . , xnp)

>.
Dimension reduction: reduce dimensionality of data while retaining as
much information about the data as possible.
Idea: not all p dimensions are equally interesting.
E.g., if jth feature has almost the same value for all n obsns,
do we really need to keep track of jth feature?
Dimension reduction is useful for e.g.,
I 2-dim scatterplots of data if p = 10.
I image compression.
I denoising images.
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PCA – Idea

Principal components analysis (PCA) seeks a small number of dimensions that
are as interesting as possible.

Here "interesting" is measured by how much the n observations vary
along the dimension.
Each dimension (i.e., principal component) found by PCA is a linear
combination of the p features.
I A linear combination of the p features is defined as

φ1X1 + φ2X2 + · · ·+ φpXp

for some coe�cient values φ1, φ2, . . . , φp.
I Given X1, X2, . . . , Xp, a linear combination can be represented by the vector

φ = (φ1, φ2, . . . , φp).
I A linear combination is called normalized if ‖φ‖2

2 = 1. (unit vector)

Coe�cients φ1, φ2, . . . , φp of a principal component are called its loadings;
the vector φ is called the principal component’s loading vector.
Principal component loading vectors are always orthogonal to each other.
I Vectors (a1, . . . , ap) and (b1, . . . , bp) are called orthogonal or perpendicular to

each other if
∑p

j=1 ajbj = 0 (i.e., if dot product is zero).

PCA computes p orthogonal principal component loading vectors in order
from "most interesting" to "least interesting".
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First principal component

Given an n× p data matrix X, how to compute the first principal component?
Because we are only interested in variance, assume each column in X has
mean zero.
Coe�cients φ11, φ21, . . . , φp1 lead to the n values

zi1 = φ11xi1 + φ21xi2 + · · ·φp1xip =

p∑
j=1

φj1xij i = 1, . . . ,n. (3)

The first principal component loading vector is defined to be
the normalized vector (φ11, φ21, . . . , φp1) that maximizes

1
n

n∑
i=1

z2
i1 . (4)

(Normalization ensures the variance is not arbitrarily large.)
Because each column of X is centered, mean of z11, z21, . . . , zn1 is also zero.
So Eq. (4) is (almost) just the sample variance of z11, z21, . . . , zn1.

(4) can be maximized via eigen decomposition or singular value
decomposition (see lab, but don’t need to know this for exam).
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First principal component

Geometric interpretation: the first principal component loading vector
defines a direction in feature space along which the data vary the most.
For all i = 1, . . . ,n, the data point xi projected onto this direction gives the
principal component score zi1.

Figure 3: Figure by James et al. (2021). A subset of the advertising data. The mean
pop and ad budgets are indicated with a blue circle. Left: The 1st principal
component direction (in green). It is the dimension along which the data vary the
most, and it defines the line that is closest to all n observations. Right: The
left-hand panel has been rotated so that the 1st principal component direction
coincides with the x-axis.
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Remaining principal components

Suppose we have computed the first principal component loading vector φ1.
How to compute the remaining principal components vectors?

PCA computes the second principal component by finding the normalized
vector φ2 that maximizes the sample variance 1

n
∑n

i=1 z2
i2, but now this vector φ2

must be orthogonal to the vector φ1.
If p = 2 and φ1 is already determined, then there is only one direction
orthogonal to φ1, and we immediately obtain φ2.
If p > 2, there are infinitely many directions orthogonal to φ1.
PCA maximizes (4) with the additional constraint that φ2 must be
orthogonal to φ1.

Third, fourth, and so on.
Once φ2 is computed, PCA finds φ3 by maximizing (4) with the additional
constraint that φ3 has to be orthogonal to both φ2 and φ1.
And so on to find φ4, φ5, etc.
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Geometric interpretation: redux

Alternative interpretation: principal components provide low-dimensional
linear surfaces that are closest to the observations.

First PC loading vector is the line in p-dim space closest to the n obsns.
First two PC loading vectors span the plane closest to the n obsns.
First three PC loading vectors span the three-dim hyperplane closest to
the n obsns. Etc.

Figure 4: Figure by James et al. (2021). Observations simulated in three dimensions. The
observations are displayed in color for ease of visualization. Left: The first two principal
component directions span the plane that best fits the data (in sense of minimizing RSS).
Right: The first two principal component score vectors give the coordinates of the
projection of the observations onto the plane.
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Geometric interpretation: redux

For any positive integer M ≤ min{n− 1,p}, together the first M principal
component score vectors and the first M principal component loading vectors
provide an M-dimensional approximation to the ith observation:

xij ≈
M∑

m=1

zimφjm. (5)

How good is this approximation? It is the best, in the sense of the
following optimization problem.
Suppose we have a data matrix X that is column-centered, and have
chosen some value of M.
Of all possible approximations of the form xij ≈

∑M
m=1 aimbjm,

consider which values {aim} and {bjm} minimize the sum of squares

p∑
j=1

n∑
i=1

(
xij −

M∑
m=1

aimbjm

)2

. (6)

It can be shown that for any value of M, the minimizers of (6) are exactly
aim = zim and bjm = φjm.
When M = min{n− 1,p}, the representation (5) becomes exact.
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The proportion of variance explained (PVE)

How much information is lost by projecting onto a few principal components,
i.e., how much variance in the data is not contained in principal components?

Assuming centered data, the total variance in the data is
∑p

j=1
1
n
∑n

i=1 x2
ij ,

and the variance explained by the mth principal component is 1
n
∑n

i=1 z2
im.

Proportion of the variance explained (PVE) of the mth principal
component is the quotient of these values, so

PVEm =

∑n
i=1 z2

im∑p
j=1
∑n

i=1 x2
ij
. (7)

Proportion of variance explained by the first M principal components is
M∑

m=1

PVEm = 1− RSS
TSS , (8)

where TSS is total sum of squared elements of X, and RSS is residual sum
of squares of the M-dimensional PC approximation.
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Screeplot

PVE is usually visualized with the screeplot.

Figure 5: Figure by James et al. (2021). Left: A scree plot depicting the proportion of
variance explained (PVE) by each of four principal components in USArrests data.
Right: The cumulative proportion of variance explained by four principal components.
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Number of predictors

Usually, we only want to have a small dimension in order to better
visualize or understand the data.
How many principal components do we need? How can we justify to use
only three instead of four or more principal components (e.g.)?
I There is no simple answer to this! There is no formula that can be applied

universally that gives us the optimum value.
I We can intuitively decide to choose the number of predictors by eyeballing

the screeplot which depicts the proportion of variance explained (PVE).
I In the screeplot, we look for a point at which the PVE by each subsequent

principal component drops significantly o� (this is subjective). Such a drop is
often referred to as an elbow in the screeplot, and the rule by choosing the
point is thus called elbow rule.
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Scaling the variables

We are usually interested to analyze the impact of certain features in relation
to their variation.

The variance of features can be large solely because their values are.
Not an issue if features are measured in the same units.
So, by scaling (by their standard deviation), the variation among all
predictors is comparable, independently of their magnitude.
In general, scaling the variables to have standard deviation one is
recommended.
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Other uses for PCA

Many statistical techniques, such as regression, classification, and clustering,
use the full n× p data matrix.

Can instead use the n×M matrix whose columns are the first M� p
principal component score vectors.
This can lead to less noisy results, since often the signal in a data set is
concentrated in its first few principal components.
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