
STA ���A – Fundamentals of Statistical
Data Science
Department of Statistics; University of California, Davis

Instructor: Dr. Akira Horiguchi (ahoriguchi@ucdavis.edu)
A�� TA: Zhentao Li (ztlli@ucdavis.edu)
A�� TA: Zijie Tian (zijtian@ucdavis.edu)
A�� TA: Lingyou Pang (lyopang@ucdavis.edu)

Section �: Unsupervised learning

Spring ���� (Mar �� – Jun ��), MWF, ��:�� PM – ��:�� PM, Young ���



C�������

Supervised data: predictors X�, . . . , Xp and a response Y measured on n
observations.

Unsupervised data: predictors X�, . . . , Xp measured on n observations, but no
response.

Still useful to analyze the association between the predictors X�, . . . , Xp.
Often performed as part of an exploratory data analysis.
Harder to assess the results from an unsupervised learning method;
there is no “truth” to compare to.
(In contrast, in supervised learning the “truth” is the response Y.)

Common unsupervised learning tasks: clustering and dimension reduction.
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Based on Chapter �� of ISL book James et al. (����).
For more R code examples, see R Markdown files in
https://www.statlearning.com/resources-second-edition

Section �: Unsupervised learning
K-means clustering
Hierarchical clustering
Principal component analysis (PCA)
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Task: find homogeneous subgroups (i.e., clusters) among observations.
"Market segmentation" aims to identify subgroups of people who might be
more receptive to certain kind of advertisements/products etc. (TikTok)
Flow cytometry: group cells based on their biomarker values.

Figure �: From James et al. (����).
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If we index the n observations by the integers �, �, �, . . . ,n, then
cluster n observations() cluster the integers �, �, �, . . . ,n

In other words, we want to partition the set {�, �, �, . . . ,n}.

Definition (Cluster)
Clusters are sets C�, . . . , CK with the following features:

C� [ C� [ · · · [ CK = {�, . . . ,n} (each obsn belongs to at least one cluster);
Ck \ Cl = ; for all k 6= l (no observation belongs to more than one cluster).
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How to select “best” clustering of given data?
Two common techniques: K-means clustering and hierarchical clustering
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K-means clustering partitions observations into K non-overlapping clusters.
The user chooses the value of K before performing K-means clustering.
"Good" clustering: if the obsns in each cluster are close to each other,
i.e., if the within-cluster variation is relatively small.
Several ways to define within-cluster variation. The most common choice
involves the squared Euclidian distance (common distance of vectors).
For obsns x�, . . . , xn 2 R, within-cluster variation of a cluster C defined by

W(C) := �
#C

X

i,i02C
(xi � xi0)� . (�)

For obsns x�, . . . , xn 2 Rp, within-cluster variation of a cluster C defined by

W(C) := �
#C

X

i,i02C
kxi � xi0k�� =

�
#C

X

i,i02C

pX

j=�

�
xij � xi0 j

��
. (�)

We want to find clusters C�, . . . , CK that minimize
PK

k=�W(Ck).
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Goal: We want to find clusters C�, . . . , CK that minimize
PK

k=�W(Ck).
This minimization problem is very di�cult to solve precisely, since there
are almost Kn ways to partition n observations into K clusters.
The following algorithm can be shown to provide a local optimum.
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K-means algorithm:
�. Randomly assign a number from � to K (K is pre-defined) to each obsn.
�. Iterate steps (a) and (b) until the cluster assignments stop changing:

(a) For each cluster, compute cluster centroid (mean of all obsns in the cluster).
(b) Assign each observation to the cluster whose centroid is the closest.

Example: draw & compute the centroid of the cluster {(�, �), (�, �), (�, �), (�,�)}

Comments:
K-means clustering derives its name from the fact that the cluster
centroids are computed as the mean of each cluster’s observations.
Step � can be shown to never increase

PK
k=�W(Ck) — will reduce it until at

local minimum. Value of obtained local minimum will depend on initial
(random) cluster assignment in Step �.
To reduce prob. of choosing a “bad” local minimum, one should run the
algorithm many times, and then choose clustering w/smallest

PK
k=�W(Ck).
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Figure �: From James et al. (����). �-means clustering and �� iterations.
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A potential disadvantage of K-means clustering is that it requires user to
prespecify number of clusters K.
Hierarchical clustering is an alternative to K-means clustering, where no
pre-defined number of clusters K is needed.
In hierarchical clustering, we also have the advantage of having
structured, tree-based illustration, called dendrogram.
Here, we describe hierarchical clustering in sense of bottom-up clustering,
meaning that the dendogram is built from the leaves "bottom up".
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Suppose simulated data set is observed without class labels.
Hierarchical clustering yields dendrogram. How to interpret?
Each leaf of dendrogram represents one of the �� obsns.
As we move up tree, some leaves begin to fuse into branches. These
correspond to obsns similar to each other. Then branches begin to fuse.
For any two obsns, height of fusion indicates how di�erent the obsns are.
(Ignore horizontal proximity.)
To identify clusters, make a horizontal cut across dendrogram.
Height of cut controls number of clusters obtained.
A single dendrogram can be used to get any number of clusters. Eyeball.

Figure �: From James et al. (����). �� observations.
�� ��
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Figure �: Figure by James et al. (����). Left: A dendrogram generated using Euclidean
distance and complete linkage. Right: The raw data used to generate the dendrogram.
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Hierarchical clustering sometimes produces worse results than K-means
clustering.

Suppose we record the height and weight of �� Shiba inus (dogs).
I �� from NYC, �� from Tokyo, �� from Cairo.
I �� males and �� females.

�-means clustering would possibly split the dogs by sex;
�-means clustering would possibly split the dogs by city.
These partitions are not nested, so they cannot be achieved by the same
dendrogram from a hierarchical clustering.
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Algorithm:
�. Begin with n obsns and a dissimilarity measure (often Euclidian distance),
and treat each observation as a cluster.

�. For i = n,n� �, . . . , � :
(a) Compute the

� i
�
�
pairwise inter-cluster dissimilarities among the i clusters.

(b) Identify the pair of clusters that are least dissimilar (i.e. most similar). Fuse
these two clusters. The dissimilarity between these two clusters indicates the
height in the dendrogram at which the fusion should be placed.

Figure �: From James et al. (����). First few steps of hierarchical clustering algorithm with
complete linkage and Euclidean dist. Top Left to Top Right to Bottom Left to Bottom Right.
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How to define dissimilarity between e.g., cluster {�, �} and cluster {�}?
Need to extend dissimilarity to two groups of observations.
Linkages define the dissimilarity between two groups of observations.
�. Complete: computes all dissimilarities between an obsn in cluster A and an
obsn in cluster B, and record largest of these nAnB dissimiliarities.

�. Single: same, except record smallest of these nAnB dissimiliarities.
�. Average: same, except record mean of these nAnB dissimiliarities.
�. Centroid: dissimilarity between two cluster centroids.

Figure �: From James et al. (����). Average, complete, and single linkage applied to an
example data set. Average and complete linkage tend to yield more balanced clusters.
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Issues in clustering
Should observations first be standardized in some way? E.g. should
variables be scaled to have standard deviation one?
Hierarchical clustering:
I What dissimilarity measure should be used?
I What type of linkage should be used?
I Where shall the dendogram be cut (i.e., how many clusters do we need/want)?

K-means clustering: how many clusters should we look for?

It is challenging to validate obtained clusters
Outside scope of class; more details found in “sequel” book
The Elements of Statistical Learning
In practice, try several di�erent choices, and look for the one with the
most useful or interpretable solution.
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P�������� ��������� �������� (PCA)
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Suppose we have n obsns on a set of p features X�, X�, . . . , Xp.
That is, suppose we have n data points
(x��, x��, . . . , x�p)>, (x��, x��, . . . , x�p)>, . . . , (xn�, xn�, . . . , xnp)>.
Dimension reduction: reduce dimensionality of data while retaining as
much information about the data as possible.
Idea: not all p dimensions are equally interesting. E.g., if jth feature has
almost the same value for all n obsns, do we really need to keep track of
jth feature?
Dimension reduction is useful for e.g.,
I �-dim scatterplots of data if p = ��.
I image compression.
I denoising images.
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Principal components analysis (PCA) seeks a small number of dimensions that
are as interesting as possible.

Here "interesting" is measured by how much the n observations vary
along the dimension.
Each dimension (i.e., principal component) found by PCA is a linear
combination of the p features.
I A linear combination of the p features is defined as

��X� + ��X� + · · ·+ �pXp
for some coe�cient values ��,��, . . . ,�p.

I Given X�, X�, . . . , Xp, a linear combination can be represented by the vector
� = (��,��, . . . ,�p).

I A linear combination is called normalized if k�k�� = �. (unit vector)

The coe�cients ��,��, . . . ,�p of a principal component are called its
loadings; the vector � is called its loading vector.
Principal component loading vectors are always orthogonal to each other.
I Vectors (a�, . . . , ap) and (b�, . . . , bp) are called orthogonal or perpendicular to

each other if
Pp

j=� ajbj = � (i.e., if dot product is zero).

PCA computes p orthogonal principal component loading vectors in order
from "most interesting" to "least interesting".
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Given an n⇥ p data matrix X, how to compute the first principal component?
Because we are only interested in variance, assume each column in X has
mean zero.
A linear combination ���,���, . . . ,�p� leads to the n values

zi� = ���xi� + ���xi� + · · ·�n�xin i = �, . . . ,n. (�)

As we assumed all data points to be centered, all zi� are also centered,
why (�) is just maximing the sample variance of all values z��, z��, . . . , zn�.
First principal component loading vector is defined to be the normalized
linear combination that maximizes

�
n

nX

i=�
z�i� . (�)

(Normalization ensures the variance is not arbitrarily large.)
Because each column of X is centered, mean of z��, z��, . . . , zn� is also zero.
So maximizing (�) is same as maximizing sample variance of z��, z��, . . . , zn�.
(�) can be maximized via eigen decomposition or singular value
decomposition (see lab, but don’t need to know this for exam).
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Geometric interpretation: the first principal component loading vector
defines a direction in feature space along which the data vary the most.
For all i = �, . . . ,n, the data point xi projected onto this direction gives the
principal component score zi�.

Figure �: Figure by James et al. (����). A subset of the advertising data. The mean
pop and ad budgets are indicated with a blue circle. Left: The �st principal
component direction (in green). It is the dimension along which the data vary the
most, and it defines the line that is closest to all n observations. Right: The
left-hand panel has been rotated so that the �st principal component direction
coincides with the x-axis.
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PCA computes the second principal component by again choosing the
normalized linear combination of the p features that maximizes the sample
variance, but now the linear combination must produce a loading vector that is
orthogonal to the first principal component loading vector.

If p = � and �� is already determined, then there is only one direction
orthogonal to ��, and we immediately obtain ��.
If p > �, there are infinitely many directions orthogonal to ��.
PCA maximizes (�) with the additional constraint that �� must be
orthogonal to ��.
Once �� is computed, PCA finds �� by maximizing (�) with the additional
constraint that �� has to be orthogonal to both �� and ��.
And so on to find ��, ��, etc.
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Alternative interpretation: principal components provide low-dimensional
linear surfaces that are closest to the observations.

First PC loading vector is the line in p-dim space closest to the n obsns.
First two PC loading vectors span the plane closest to the n obsns.
First three PC loading vectors span the three-dim hyperplane closest to
the n obsns. Etc.

Figure �: Figure by James et al. (����). Observations simulated in three dimensions. The
observations are displayed in color for ease of visualization. Left: The first two principal
component directions span the plane that best fits the data (in sense of minimizing RSS).
Right: The first two principal component score vectors give the coordinates of the
projection of the observations onto the plane.
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For any positive integer M  min{n� �,p}, together the first M principal
component score vectors and the first M principal component loading vectors
provide an M-dimensional approximation to the ith observation:

xij ⇡
MX

m=�
zim�jm. (�)

How good is this approximation? It is the best, in the sense of the
following optimization problem.
Suppose we have a data matrix X that is column-centered, and have
chosen some value of M.
Of all possible approximations of the form xij ⇡

PM
m=� aimbjm,

consider which values {aim} and {bjm} minimize the sum of squares

pX

j=�

nX

i=�

 
xij �

MX

m=�
aimbjm

!�

. (�)

It can be shown that for any value of M, the minimizers of (�) are exactly
aim = zim and bjm = �jm.
When M = min{n� �,p}, the representation (�) becomes exact.
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How much information is lost by projecting onto a few principal components,
i.e., how much variance in the data is not contained in principal components?

Assuming centered data, the total variance in the data isPp
j=�

�
n
Pn

i=� x�ij ,
and the variance explained by the mth principal component is �

n
Pn

i=� z�im.

Proportion of the variance explained (PVE) of the mth principal
component is the quotient of these values, so

PVEm =

Pn
i=� z�imPp

j=�
Pn

i=� x�ij
. (�)

Proportion of variance explained by the first M principal components is
MX

m=�
PVEm = �� RSS

TSS , (�)

where TSS is total sum of squared elements of X, and RSS is residual sum
of squares of the M-dimensional PC approximation.
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PVE is usually visualized with the screeplot.

Figure �: Figure by James et al. (����). Left: A scree plot depicting the proportion of
variance explained (PVE) by each of four principal components in USArrests data.
Right: The cumulative proportion of variance explained by four principal components.
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Usually, we only want to have a small dimension in order to better
visualize or understand the data.
How many principal components do we need? How can we justify to use
only three instead of four or more principal components (e.g.)?
I There is no simple answer to this! There is no formula that can be applied

universally that gives us the optimum value.
I We can intuitively decide to choose the number of predictors by eyeballing

the screeplot which depicts the proportion of variance explained (PVE).
I In the screeplot, we look for a point at which the PVE by each subsequent

principal component drops significantly o� (this is subjective). Such a drop is
often referred to as an elbow in the screeplot, and the rule by choosing the
point is thus called elbow rule.
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We are usually interested to analyze the impact of certain features in relation
to their variation.

The variance of features can be large solely because their values are.
Not an issue if features are measured in the same units.
So, by scaling (by their standard deviation), the variation among all
predictors is comparable, independently of their magnitude.
In general, scaling the variables to have standard deviation one is
recommended.
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Many statistical techniques, such as regression, classification, and clustering,
use the full n⇥ p data matrix.

Can instead use the n⇥M matrix whose columns are the first M⌧ p
principal component score vectors.
This can lead to less noisy results, since often the signal in a data set is
concentrated in its first few principal components.
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