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Based on Chapter � of ISL book James et al. (����).
For more R code examples, see R Markdown files in
https://www.statlearning.com/resources-second-edition

Section �: Resampling methods
Cross-validation
Bootstrap
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Resampling methods are an indispensable tool in modern statistics.
Idea: Repeatedly draw samples from a training set, then refit a model on
each sample in order to get additional info about the fitted model.
For example, in order to estimate the variability of a linear regression fit,
we can repeatedly draw di�erent samples from the training data, fit a
linear regression to each new sample, and then examine the extent to
which the resulting fits di�er.
Might provide information that would not be available from fitting the
model only once using the original training sample.
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We discuss two resampling methods: cross-validation and bootstrap
Cross-validation can be used to estimate test error.
Bootstrap can help to provide a measure of accuracy of a parameter
estimate or of a given statistical learning method.

How does this help us?
Evaluating a model’s performance is known as model assessment.
Helps to select proper level of flexibility for a model; process known as
model selection.

� ��



R��������� �������

C����-����������



I���

Recall distinction between test error rate and training error rate of a predictor.
Choose predictor that produces smallest test error (better generalization).
Test error can easily be calculated if a designated test set is available, but
usually this is not the case.
How to estimate test error in such cases?
Saw that training error rate is often quite smaller than the test error rate.
Can instead train the predictor on a subset of the available data, then
assess performance on the unused data.

For now we consider only regression (classification is similar).
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Randomly split the available data in two sets of the same size: a training set
and a validation set (or hold-out set).

Procedure of the validation set approach:
�. Randomly split the available data in two sets of the same size.
�. Fit the model on the training set.
�. Use the validation set to assess the performance of the fit (e.g., MSE)

Example: estimate test MSE for linear regression using the validation
set approach
We want to do linear regression given the data set

(x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��),
(x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��).

We split the whole data set into two groups with three elements each.

� set.seed(��) � allows these "random" numbers to be reproduced later
� n � �
� train_inds � sample(n, n/�) � � � �
� valid_inds � (�:n)[-train_inds] � � � �

) Training set: (x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��).
) Validation set: (x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��).
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Conceptually simple and easy to implement, but two major drawbacks:
The validation estimate of the test error rate highly depends on the
values in the validation set.

Figure �: Image by James et al. (����) using Auto data set of validation errors from
predicting mpg using polynomial functions of horsepower. Left: one random split.
Right: �� random splits, illustrating variability in the estimated test MSE.

Statistical methods tend to perform worse if trained on half of the whole
data set compared to using the whole data set.
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Leave-one-out cross validation (LOOCV): one data point for the validation set,
and the remaining n� � data points for the training set.

Start by leaving (x�, y�) out, train our model on (x�, y�), . . . , (xn, yn), and
predict y� by ŷ� based on the trained model, and calculate MSE�.
MSE� is based on a single observation (x�, y�), making it highly variable
and hence a poor estimate for the test error. Thus we repeat the LOOCV by
leaving out (x�, y�), then (x�, y�), etc.

Figure �: Image by James et al. (����).
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Procedure of the LOOCV, given the data (x�, y�), . . . , (xn, yn) :
�st step:
I Leave (x�, y�) out, and use it as validation set.
I Derive an estimator f̂� based on the training set (x�, y�), . . . , (xn, yn).
I Calculate MSE� := (y� � ŷ�)�, where ŷ� = f̂�(x�).

...
nth step:
I Leave (xn, yn) out, and use it as validation set.
I Derive an estimator f̂n based on the training set (x�, y�), . . . , (xn��, yn��).
I Calculate MSEn := (yn � ŷn)� where ŷn = f̂n(xn).

(n+ �)st step: Calculate the LOOCV estimate for the test MSE, namely

CV(n) =
�
n

nX

i=�
MSEi.
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Example: estimate test MSE for linear regression using LOOCV.
Data set (x�, y�) = (�, ��), (x�, y�) = (�, ��), (x�, y�) = (�, ��), so n = �.
�. Leave out (x�, y�) = (�, ��).
Train f̂� on (x�, y�) = (�, ��), (x�, y�) = (�, ��) =) f̂�(x) = ��x � ��.
As f̂�(�) = ŷ� = ��, get MSE� = (y� � ŷ�)� = (��� ��)� = ���.

�. Leave out (x�, y�) = (�, ��).
Train f̂� on (x�, y�) = (�, ��), (x�, y�) = (�, ��) =) f̂�(x) = ��x � ���.
As f̂�(�) = ŷ� = ��, get MSE� = (y� � ŷ�)� = (��� ��)� = ���.

�. Leave out (x�, y�) = (�, ��).
Train f̂� on (x�, y�) = (�, ��), (x�, y�) = (�, ��) =) f̂�(x) = ��x.
As f̂�(�) = ŷ� = ��, get MSE� = (y� � ŷ�)� = (��� ��)� = ���.

Thus the test-MSE estimate for linear regression is

CV(�) = (���+ ���+ ���)/� = ���.

We could also compute CV(�) for a quadratic fit, and then choose the model —
linear fit vs quadratic fit — that produces the smaller CV(�) value.
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Pros:
Compared to the validation set approach, we have a larger sample size
n� � for the training data instead of only approximately half, thus LOOCV
tends not to overestimate the test error rate.
In LOOCV every data point is left out once, so data splits are not random
(unlike in validation set approach).
LOOCV is a very general method and can be used for many statistical
learning methods (also logistic regression and LDA etc.).

Cons: LOOCV can computationally be very expensive since n predictors are fit.
Exception: with least squares linear or polynomial regression, the cost of
LOOCV is (amazingly!) the same as that of a single model fit:

CV(n) =
�
n

nX

i=�

✓
yi � ŷi
�� hi

◆�

where the leverage hi is defined in the textbook (don’t need to remember
this for HW/exams).

�� ��

[



k-���� CV (����)

k-fold CV randomly splits the given data with n elements in k groups (folds) of
approximately equal size, by leaving the first fold out as a validation set, using
the remaining k� � folds as a training set, and repeating the procedure k times.

Could do: permute indices �, �, . . . ,n, then partition into k folds.

Figure �: Image by James et al. (����). Here we chose to use k = �.
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Procedure of the k-fold CV, given the data (x�, y�), . . . , (xn, yn) :
�st step: Randomly split the given data in k folds (k is predefined).
�st step:
I Leave the �st fold out, and use it as validation set.
I Derive an estimator f̂ based on the remaining k� � folds.
I Calculate MSE� based on the �st left out fold (if n = ��� and k = �, so we have

k = � folds with n/k = �� elements each, then with I� denoting the set of the
indices of all elements in the first fold (e.g. I� = {�, �, �, ��, ��, ��, . . . , ���}),
we have MSE� = �

n/k
P

i2I� (yi � ŷi)�).

...
kth step:
I Leave the kth fold out, and use it as validation set.
I Derive an estimator f̂ based on the remaining k� � folds.
I Calculate MSEk based on the kth left out fold.

(k+ �)st step: Calculate the k-fold CV estimate for the test MSE, namely

CV(k) =
�
k

kX

i=�
MSEi . (�)
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k-fold CV generalizes LOOCV (k = n), but often use k = � or k = �� in practice.
If k < n, then k-fold CV is less computationally expensive than LOOCV.
Another advantage of k-fold CV involves bias-variance trade-o�.
I Two sources of variability: (�) random data split and (�) data from unk. distr.

Figure �: Image by James et al. (����) using single Auto data set of validation
errors from predicting mpg using polynomial functions of horsepower.

I LOOCV has smallest bias compared to k-fold CV for any other k; gives approx.
unbiased estimates of the test error since each training set has (n� �) obs.

I LOOCV also has the largest variance; because the n fitted models are trained
on almost identical data sets, their outputs are highly positively correlated, so
the variance does not lessen much when averaging over the n fitted models.
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When examining data, we usually do not know true test MSE, making it di�cult
to determine accuracy of the cross-validation estimate.

If we examine simulated data, then we can compute the true test MSE.
Select flexibility level that produces smallest estimated test error.

Figure �: Image by James et al. (����). For three simulated data sets, shows true test MSE
(blue), LOOCV estimate (black dashed), and ��-fold CV estimate (orange). Cross indicates
minimum of MSE curve.

�� ��

End of May 12

lecture



C������������

Cross-validation can also be used for qualitative responses (in classification).
The LOOCV error rate in the classification setting takes the form

CV(n) =
�
n

nX

i=�
Erri , (�)

where Erri := �{yi 6=ŷi} is � if yi 6= ŷi (obs i is misclassified), and � if yi = ŷi
(obs i is assigned to correct class).
Bias-variance tradeo� again in Figures �.� and �.� of James et al. (����).
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The bootstrap is a widely applicable and extremely powerful statistical tool.
Cross-validation randomly samples full data set without replacement;
bootstrap randomly samples full data set with replacement. (Picture)

Useful for many purposes, including for quantifying the uncertainty
associated with a given estimator or statistical learning method.
Easier to illustrate through an example.
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Suppose we wish to invest a fixed sum of money in two financial assets that
yield (random) returns of X and Y.

We will invest a fraction � of our money to asset �; fraction ��� to asset �.
Returns are random; want � that minimizes total risk of our investment,
i.e., that minimizes Var(�X + (�� �)Y).
Letting ��X = Var(X), ��Y = Var(Y), �XY = Cov(X, Y), can show minimizer is

��Y � �XY
��X + ��Y � ��XY

=: ↵. (�)

��X , ��Y , �XY usually unknown; can estimate (�) by estimating ��X , ��Y , �XY by
e.g., sampling ��� pairs of returns to get an estimate ↵̂ for (�).
This provides one value of ↵̂; how good is this estimate?
Get B = ���� new data sets by sampling ��� pairs of returns from true
population B times. Then compute B ests ↵̂�, . . . , ↵̂B and their std error:

SEB(↵̂) =

vuuut �
B� �

BX

i=�

0

@↵̂i � �
B

BX

j=�
↵̂j

1

A
�

.

If we cannot sample from true population, get B "new" data sets by
instead repeatedly sampling with replacement from original ��� pairs.
Then compute standard error of the B bootstrap estimates ↵̂⇤�, . . . , ↵̂⇤B.
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Figure �: Table by James et al. (����). We gathered n = � measurements of a certain
species, sampled B times by randomly selecting values from the n observations (with
replacement) and obtained the B bootstrap data sets Z⇤�, . . . , Z⇤B for a large number B.
Based on the bootstrap data sets, we can derive estimators ↵̂⇤�, . . . , ↵̂⇤B.
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How similar is the distribution of the bootstrap estimates ↵̂⇤�, . . . , ↵̂⇤B

to the distribution of the estimates ↵̂�, . . . , ↵̂B from the true population?

Figure �: Image by James et al. (����). Left: histogram of estimates of ↵ obtained by
generating ���� simulated data sets from true population. Center: histogram of
estimates of ↵ obtained from ���� bootstrap samples from a single data set. Right:
boxplots of estimates in Left and Center. Pink lines indicate true value of ↵.
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