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Based on Chapter � of ISL book James et al. (����).
For more R code examples, see R Markdown files in
https://www.statlearning.com/resources-second-edition

Section �: Classification.
Logistic regression
Alternatives to logistic regression
Linear discriminant analysis for p = �
Idea of linear discriminant analysis for p > �
Idea of quadratic discriminant analysis for p > �
Naive Bayes
Errors in classification
Comparison of classification methods
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�. A person arrives at the emergency room with a set of symptoms that could
possibly be attributed to one of three medical conditions. Which of these
medical conditions does the person have based on the symptoms given?

�. An online banking service must be able to determine whether or not a
transaction being performed on the site is fraudulent, on the basis of the
user’s IP address, past transaction history, and so forth.

�. On the basis of DNA sequence data for a number of patients with and
without a given disease, one would like to figure out which DNA mutations
are disease-causing and which are not.
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Figure �: Image by James et al. (����), based on the Default data set in R. The annual
incomes and monthly credit card balances of a number of individuals, where the
individuals who defaulted on their credit card payments are shown in orange, and those
who did not are shown in blue.
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Classification refers to the task of predicting qualitative/categorical responses
Each response yi is a discrete value in a predetermined category.
Predicting a qualitative response for an observation can be referred to as
classifying that observation, as one assigns the observation to a certain
category/class.
(In contrast, regression deals with “continuous” numeric response values.)

As in regression. . .
We use training observations (x�, y�), . . . , (xn, yn) to find the best estimator
in the allowed class of models.
I That is, we try to find the best estimator (among the allowed class) that fits

the training data.
We then evaluate how well the estimator performance generalizes to
unseen data.
I We can do this directly if there are also test observations

(xn+�, yn+�), . . . , (xn+m, yn+m).
I Otherwise, we can use a resampling method to estimate the estimator’s

generalization ability (Sec �).

� ��
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In example � above, a person arrives at the emergency room with a set of
symptoms. We would like to treat the person based on three reasonable
medical conditions: "Appendicitis", "Food poisoning", "Gastritis".
We could assign each medical condition Y a number from � to �:

Y =

8
><

>:

�, if "Appendicitis" ,
�, if "Food poisoning",
�, if "Gastritis".

or Y =

8
><

>:

�, if "Gastritis",
�, if "Appendicitis",
�, if "Food poisoning".

Both approaches work, but imply a totally di�erent relationship.
Can we use linear regression for a binary (two levels) response? In the
banking example, the two transaction categories can be coded as

Y =

(
�, if "Fraudulent",
�, if "Not fraudulent".

We have no problem with ordering here, but using linear regression here
(for estimating probabilities to assign values) could lead to values smaller
than zero or larger than one (unreasonable for probabilities!).

� ��
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Figure �: Image by James et al. (����), based on the Default data set in R. Left: The
estimated probability of default using linear regression, where the orange ticks indicate
the values "�" for "No", and "�" for "Yes". Right: Predicted probabilities of default using
logistic regression, where all probabilities lie between � and �.
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If not linear regression, then what can we use?
Logistic regression (usable only for binary responses) is perhaps the most
related, so let’s start there.

� ��



C������������ ���� R

L������� ����������



I���: B����� �������������

Classification: compute/estimate conditional probability P(Y = k|X) for each
class k.

If there are only two classes, we only need P(Y = �|X). (Why?)

Suppose our two classes are coded as � and � (e.g., "no" and "yes")
Given a value or estimate of the conditional probability

p(X) = P(Y = �|X). (�)

a default decision rule is to predict � (or "yes") if and only if p(X) > �.�
Consequence might be worse for misclassifying a "yes" than for
misclassifying a "no", in which case we might use the decision rule:
predict � (or "yes") if and only if p(X) > �.�

� ��

=

P(Y = 1(X)
,

P(Y = 2(X)
,

P(i = 3IX)
,

-.. . P(Y = K(X)

=>-

P(y = 0(X) + P(Y =1(x) = 1

E P(Y =0(X) = 1 - P(Y = 1 (x)

If we know P(Y = /IX)
, then we also know P(Y =OIX).

-
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Logistic regression models probabilities of binary responses
Boils down to modelling probability of "yes": (�)
Since probabilities have values in [�, �], we cannot use the linear approach

p(X) = �� + ��X (�)
as on the left side in Figure �, and need a function with values in [�, �].
The logistic function g(x) = ex

�+ex maps the real line into the interval (�, �).
Logistic regression maps the linear form (�) into values between � and �
in order to model the probabilities by

p(X) = g (�� + ��X) =
e��+��X

�+ e��+��X . (�)

(�) implies (by rearranging the terms)
p(X)

�� p(X) = e��+��X, (�)

where this quantity is called odds.
Applying the (natural) logarithm on both sides of (�) yields

log

✓
p(X)

�� p(X)

◆
= �� + ��X,

where the LHS is called log odds or logit. Advantage: linear in X.
� ��

--
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We can make predictions from estimators �̂� and �̂� for �� and �� by using
the estimated probability

p̂(X) = g
⇣
�̂� + �̂�X

⌘
=

e�̂�+�̂�X

�+ e�̂�+�̂�X
,

where we recall that g is the logistic function.
If this estimated probability is over a certain pre-defined threshold (e.g.
�.��), then we would assign X = x to the class �.
Example: If �̂� = ��.� and �̂� = �.���, we predict the default probabilities
of individuals with balance X = $�,��� and X = $�,��� by

p̂(X = �,���) = e�̂�+�̂�X

�+ e�̂�+�̂�X
=

e��.�+�.���·�,���

�+ e��.�+�.���·�,��� ⇡ �.���,

p̂(X = �,���) = e�̂�+�̂�X

�+ e�̂�+�̂�X
=

e��.�+�.���·�,���

�+ e��.�+�.���·�,��� ⇡ �.���.

�� ��
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=>
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glm()

We use glm() for logistic regression (’glm’ stands for general linear model).
Must specify which variables are used, data set, and type of response.
Must put family�binomial to specify a binary response.

� library(palmerpenguins)
�
� � We work with only Adelie and Chinstrap species (we exclude Gentoo).
� peng_binary �- na.omit(penguins[penguins�species !� ’Gentoo’, ])
� logreg �- glm(species � bill_length_mm, data�peng_binary, family�binomial)
� prob �- predict(logreg, type�’response’) � ’link’ also possible
� predicted �- ifelse(prob�.�, ’Adelie’, ’Chinstrap’)
�
� plot(prob)
�� abline(a��.�, b��, col�’orange’)

�� ��

-
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If we have p predictors X = (X�, . . . , Xp), we have a multiple logistic regression
model:

The logit is

log

✓
p(X)

�� p(X)

◆
= �� + ��X� + · · ·+ �pXp.

The probabilities are

p(X) = g (�� + ��X� + · · ·+ �pXp) =
e��+��X�+···+�pXp

�+ e��+��X�+···+�pXp .

�� ��

u
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Recall: logistic regression directly models P(Y = k|X = x) for binary responses
by using the logistic function.

Some issues:
When there are big di�erences between two classes, the parameter
estimates in the logistic regression model are unstable.
If the distribution of X is approximately normal in each of the classes and
the sample size is small, then other approaches are more accurate than
logistic regression.

�� ��
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Theorem �: Bayes’ theorem
Let ⌦ 6= ;. For any events A,B ✓ ⌦ with P(B) 6= � holds,

P(A|B) = P(B|A)P(A)
P(B) . (�)

Often P(B) is unknown, but law of total probability can help compute P(B).
Because the sets A and Ac partition ⌦, we can write P(B) as

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac).

More generally, for any partition {A�, A�, . . .} of ⌦, we can write P(B) as

P(B) =
1X

j=�
P(B|Aj)P(Aj).

More intuition here
https://www.youtube.com/watch?v��wCnvr�Xw�E

�� ��

LOCBLPLAB
E PLAIB) PCB) = PCBIA)PCA)vide both sides by P(B)

P(B) = P(B + 2) = P(B- [AvAY) = PLB-A]u[B-AY) = P(B1A)
=>

+ P(B - AY
- =>

#A
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We can instead use Bayes’ theorem to estimate P(Y = k|X = x):

pk(x) := P(Y = k|X = x) = ⇡kfk(x)PK
`=� ⇡`f`(x)

, (�)

where
⇡k := P(Y = k) is the overall or prior probability that a randomly chosen
observation comes from the kth class.
I Here ⇡ is just a variable name — not the same as ⇡ = �.����� . . .!

fk(X) is the PMF/PDF of X given that the response is from the kth class.

How to estimate these quantities ⇡k and fk?
⇡k — the proportion of observed elements in the kth class
I E.g. if there are �, �, � elements in the classes �, �, �, respectively, then the

estimated probabilities are ⇡̂� = �
�� , ⇡̂� =

�
�� , ⇡̂� =

�
�� .

Estimating fk is more challenging — approaches will be discussed in the
next few slides.

�� ��
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A���������� �� fk �� LDA ��� p = �

This approach estimates fk(x) by making some simplifying assumptions:
fk is a normal/Gaussian PDF, i.e. for all x holds

fk(x) =
�p
�⇡�k

exp

⇢
� �
���k

(x � µk)
�
�
. (�)

Same variance parameter across all K classes: ��� = ��� = · · · = ��K = ��.

�� ��

-

=
=

K classes => Mi , ... , MK 2 o
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With these assumptions, we plug in this PDF (�) into (�) to get

pk(x) =
⇡k

�p
�⇡�

exp
�
� �

��� (x � µk)
� 

PK
`=� ⇡`

�p
�⇡�

exp
�
� �

��� (x � µ`)�
 . (�)

Recall: Bayes classifier assigns obsn x to class
argmax

k2{�,�,...,K}
pk(x)

This is equivalent to assigning x to class for which discriminant function

�k(x) = x · µk
��

� µ�k
��� + log(⇡k), k 2 {�, �}, (�)

is largest. (Why? Take the log of (�).)
If K = �, classifier assigns x to class � if ��(x) > ��(x), to class � otherwise.
If p = �, the Bayes decision boundary is the value x for which ��(x) = ��(x)
I What does this inequality ��(x) > ��(x) and boundary simplify to if ⇡� = ⇡�?

�� ��

doesn't depend on K
.

O ↓ Denominator is

the same in&
p ,

(x)
, pu(x) , ps(x)...

= argaxlog[pi] = argmalgexpx-u]-

>
T ->

inequality
8. (x)(S2(x) boundary
=xux 8.(x) = fe(x)

Ex= S E X =M
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Figure �: Image by James et al. (����). Two pdfs of normal distributions with means
µ� = ��.�� and µ� = �.��, respectively, and variance �� = �. The dashed vertical line
represents the Bayes decision boundary, so we assign the observation to class � if x is
left of the line, and to class � otherwise.

�� ��
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In the plot above, we can calculate Bayes classifier because we know values for
all parameters ⇡�, . . . ,⇡K, µ�, . . . , µK,��.

In practice, we must estimate these parameters to apply Bayes classifier.
Linear discriminant analysis (LDA) method plugs the estimates

⇡̂k =
nk
n , µ̂k =

�
nk

X

i:yi=k
xi, �̂� =

�
n� K

KX

k=�

X

i:yi=k
(xi � µ̂k)

�,

into (�) to get the discriminant function

�̂k(x) = x · µ̂k
�̂�

� µ̂�k
��̂� + log(⇡̂k). (��)

⇡̂k — proportion of all training observations from kth class.
µ̂k — average of all training observations from kth class.
�̂� — weighted average of sample variances for each class.

This discriminant function �̂k(x) is linear in x, hence the name LDA.

�� ��

K =2 ->T ,
T

, M, Mr ,
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Figure �: Image by James et al. (����). Left: Two pdfs of normal distributions with means
µ� = ��.�� and µ� = �.��, respectively, and variance �� = �. The dashed vertical line
represents the Bayes decision boundary, so we assign the observation to class � if x < �
and class � otherwise. Right: �� observations were drawn from each of the two classes,
and are shown as histograms. The Bayes decision boundary is shown as a dashed vertical
line, and the solid vertical line represents the LDA decision boundary estimated from the
training data.

�� ��
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For K = � classes (class "�" and "�"), we have the five data points

(�, �), (�,�), (�,�), (�, �), (�,�)

and want to calculate the LDA discrimination function (��) for k = � and k = �.

�� ��

(X, Y 1) (x2
,Y2) --- (x5, 45)

- - -

= No I I => (x) = X. -03 +log))
= =-, (x) =X. + log(z)
↑ = 5(8 + 6 + 4) = b

Both discriminant functions

u = [a + 7) = 8 - are linear in X .

-

8=[5(8 - 62 + (6 - 6) + (4- 623 + G(9- 82 + (- 8123]
~ -

class I

class O

=-[8 +2]t
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Recall (stringent) assumptions: fk is normal/Gaussian, and variance is same
across all K classes.

Next we introduce extensions that loosen these assumptions at the cost
of increased computation and/or “too much” flexibility.

�� ��
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Linear discriminant analysis can also be conducted for p > � predictors.
For p > �, it is also assumed that X = (X�, . . . , Xp) is normally distributed,
but since X is a vector, it is drawn from a multivariate normal distribution
with a certain mean vector (µ�, . . . , µp) and covariance matrix ⌃.
Discriminant function can be derived in a manner similar to as in p = �.

A p-variate normal distribution is characterized by a p-dimensional mean
vector and a p⇥ p covariance matrix

Mean vector: the center of the p-variate distribution.
Covariance matrix ⌃: captures the variance and covariance relationships
between X�, . . . , Xp.
I Element in row i and column j is the covariance between Xi and Xj.
I ith diagonal element is the variance of Xi.I Thus ⌃ is a symmetric matrix.

�� ��
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Figure �: Image by James et al. (����). Left: A two-dimensional normal distribution with
p = � uncorrelated predictors. Right: A two-dimensional normal distribution with p = �
predictors having a correlation of �.�.

�� ��
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Each class k is now allowed to have its own p⇥ p “covariance matrix” ⌃k.
For p = �, same as saying each class has its own variance parameter ��k.
Why use QDA over LDA, or vice-versa? Bias-variance trade-o� (recall from
Section �, slide ��/��).
For p predictors, number of parameters to estimate is
I quadratic in p for QDA,
I linear in p for LDA.

LDA is much less flexible, and so has much lower variance.
But if covariance matrices wildly di�er between classes, then LDA can
su�er from high bias.
Roughly speaking,
I use LDA if n is relatively small, which makes it crucial to reduce variance,
I use QDA if n is very large, or if assumption of a common covariance matrix for

the K classes is clearly wrong.

�� ��
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Figure �: Image by James et al. (����). Left: The Bayes (purple dashed), LDA (black dotted),
and QDA (green solid) decision boundaries for a two-class problem with⌃� = ⌃�. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is linear, it is
more accurately approximated by LDA than by QDA. Right: here⌃� 6= ⌃�. Since the Bayes
decision boundary is non-linear, it is more accurately approximated by QDA than by LDA.

�� ��
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The naive Bayes classifier relies on Bayes’ theorem.
LDA/QDA make distribution assumptions about fk(x).
Instead, the naive Bayes classifier assumes for each class k = �, . . . ,K:

Within the kth class, the p predictors are independent.

Mathematically, this means that for each class k:

fk(x) = fk,�(x�)⇥ fk,�(x�)⇥ · · ·⇥ fk,p(xp) (��)

where fkj is the PDF/PMF of the jth predictor for obsns in the kth class.
Plug (��) into (�) to get the posterior probability

pk(x) = P(Y = k|X = x) = fk,�(x�) · fk,�(x�) · fk,p(xp)⇡kPK
`=� f`,�(x�) · f`,�(x�) · f`,p(xp)⇡`

. (��)

The naive Bayes classifier will put an observation with predictor x into the
class that maximizes posterior probability (��)

�� ��
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The independence assumption, although often unrealistic, produces decent
results, especially when n is too small to e�ectively estimate the joint
distribution fk(x) of predictors x within each class k.

Without strong simplifying assumptions, estimating a joint distribution
typically requires a huge amount of data.
Bias-variance tradeo�: introduce some bias to reduce variance.

�� ��
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Estimating the posterior probability (��) requires estimating the univariate
density functions fk,j for all classes k = �, . . . ,K and all predictors j = �, . . . ,p.

Several options:
If Xj is quantitative, we can assume Xj|Y = k ⇠ N (µk,j,�

�
k,j) (as in LDA) or

use a nonparametric approach.
If Xj is qualitative, we could count the proportion of training observations
for the jth predictor corresponding to each class k.
I E.g. suppose we want to predict whether a student studies more than ��

hours per week based on their major (so p = �). We survey ��� people:
Math major Art major Poli Sci major

Study > �� hr /wk �� �� �
Study  �� hr /wk �� �� ��

We use proportions (i.e., divide each cell by column sum) to estimate the
“true” PMFs fk,j (each column is a PMF):

Math major Art major Poli Sci major
Study > �� hr /wk �.� �.�� �.��
Study  �� hr /wk �.� �.�� �.��

�� ��
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In classification, observations can be assigned to the wrong class.
In binary classification one can make two mistakes: false positives and
false negatives.
Examples of not default vs default: cancer vs no cancer, spam vs not spam.
A confusion matrix displays both error types.

Figure �: Tables by James et al. (����). A confusion matrix compares the LDA
predictions to the true default statuses for the ��,��� training observations in the
Default data set, using a modified threshold value that predicts default for any
individuals whose posterior default probability exceeds �� �.

�� ��
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� � Using peng_binary and predicted from previous slide
�
� pb_species �- factor(peng_binary�species, levels�c(’Adelie’, ’Chinstrap’))
� table(pb_species, predicted)

� � pb_species line is not necessary, but what happens if we instead did:
� table(peng_binary�species, predicted)

�� ��
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Recall: Bayes classifier assigns observation to class for which the posterior
probability (��) is largest.

For binary responses, assign x to "Yes" if

P(default � Yes|X = x) > �.�.

Weights both types of mistakes (FN and FP) the same.
But sometimes we care more about lowering false negatives. E.g., a credit
card company trying to detect a fraudulent charge.
Can lower the threshold from �.� to e.g., �.�.
What happens to TP rate and FP rate as threshold decreases?

�� ��
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The ROC curve simultaneously displays both types of errors for all thresholds.

Figure �: Image by James et al. (����). An ROC curve for LDA classifier on Default data.
Dotted line represents “no information” classifier, i.e., one that doesn’t use predictors.

ROC curve is parameterized by the possible threshold values.
Overall performance of a classifier, summarized over all possible
thresholds, is given by the area under the ROC curve (AUC).
The larger the AUC, the better the classifier.

�� ��
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Analytical (or mathematical) comparison:
Classifiers with a linear decision boundary are special cases of naive
Bayes. Hence, LDA is a special case of naive Bayes. (This is not obvious.)
No method uniformly dominates others: The appropriate model depends
on the predictor’s distribution in each class as well as n and p.
K-nearest neighbors (KNN) is a nonparametric approach. Hence, one can
expect that it dominates naive Bayes and LDA when the true decision
boundary is highly non-linear. However, KNN requires many observations
relative to the number of predictors to perform well.

For an empirical (or data-based) comparison, see Section �.�.�.
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