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O�������

Based on Chapter � of ISL book James et al. (����).
For more R code examples, see R Markdown files in
https://www.statlearning.com/resources-second-edition

Section �: Regression Analysis with R
Linear Regression
Idea of polynomial regression
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S������ �: R��������� A������� ���� R

L����� R���������



A� ������� – �

Consider the data set in Advertising.csv consisting of the sales of a
product in ��� di�erent markets, with advertising budgets for the product in
each of those markets for three di�erent media: TV, Radio, Newspaper.

� adv �- read.csv("Advertising.csv", row.names�"X")
� str(adv)

� ��



A� ������� – �

We want to investigate the relationship between Sales and the total budget
spent for advertisement on TV, Radio, and Newspaper.

Then, we sum row-wise, but exclude the last column (which is the �th
column after we deleted the �st column).

� adv�Budget �- rowSums(adv[, -�])
� str(adv)

� ��



A� ������� – �

Reasonable research questions for this data set:
Is there a relationship between Budget and Sales?
If there is a relationship, is it linear?
How strong is the relationship between Budget and Sales?
Which media contribute to sales?
How accurately can we estimate the e�ect of each medium on sales?
How accurately can we predict future sales?

� ��



A� ������� – �

� ggplot(adv, aes(Budget, Sales)) �
� geom_point() �
� geom_smooth(method�"lm") �
� theme_minimal()
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L����� ���������� – M����� ��������������

Recall: want to estimate the relationship between Y and X�, . . . , Xp.
Linear regression simplifies the task of estimating the “true” relationship
to the task of estimating p+ � parameters ��,��, . . . ,�p:

Y = �� + ��X� + · · ·+ �pXp + " (�)
where the error term " is a catch-all for what is missed by this model.
For n observations

(x��, x��, . . . , x�p, y�),
(x��, x��, . . . , x�p, y�),

...
(xn�, xn�, . . . , xnp, yn),

there is the following matrix representation
yi = �� + ��xi� + · · ·+ �pxip + "i, for i = �, �, . . . ,n (�)
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O������� L���� S������ (OLS)

A “good” estimator for the regression parameters � = (��, . . . ,�p)
T 2 Rp+�

produces small residuals.
A residual is the di�erence between a response and its predicted value.
The ith residual is yi � ŷi for i = �, . . . ,n.
� can be estimated by using the Ordinary Least Squares (OLS) method.
The OLS estimator for � is defined to be the vector that minimizes the
residual sum of squares:

�̂OLS := argmin�2Rp+�ky � X�k� (�)

where for any z = (z�, · · · , zp+�)T 2 Rp+� holds ||z||� = z�� + · · ·+ z�p+�.
It can be shown that �̂OLS = (XTX)��XTy (if the inverse (XTX)�� exists).

� ��

residual sum of squares
-

=>

-



O������� L���� S������ (OLS) – G�������

The OLS estimator �̂OLS 2 Rp+� produces:
p = �: sample mean of the y�, . . . , yn (best estimate w/o predictor info)
p = �: “line of best fit”
p = �: “plane of best fit”
p � �: “hyperplane of best fit”

Given a line/plane/hyperplane of best fit:
Residual is vertical displacement between point and
line/plane/hyperplane

� ��



O������� L���� S������ (OLS) – E������ ���� �� ���� ��

Figure �: Image by James et al. (����). “For the Advertising data, the least squares fit for
the regression of sales onto TV is shown.” The line is chosen to minimize the sum of the
squared vertical distances between each observation (shown in red) and the line.

� ��



O������� L���� S������ (OLS) – E������ ����� �� ���� ��

Figure �: Image by James et al. (����). “In a three-dimensional setting, with two
predictors and one response, the least squares regression line becomes a plane. The
plane is chosen to minimize the sum of the squared vertical distances between each
observation (shown in red) and the plane.”

�� ��



(L�����) R���������

Questions of interest:
�. Is at least one of the predictors X�, X�, . . . , Xp useful in predicting the
response Y?

�. Do all the predictors help to explain Y, or is only a subset of the
predictors useful?

�. How well does the model fit the data?
�. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

Questions apply to regression generally, but answers might be specific to linear
regression.

�� ��



�. �� ����� � ������������ ������� ��� �������� ��� ����������?

Are all regression coe�cients equal to zero?
What would this imply about the relationship?
One can use the hypothesis test

H� : �� = �� = · · ·�p = � vs. Ha : �j 6= � for at least one j, (�)

for which the following F-statistic is needed:

F =
(TSS� RSS)/p
RSS/(n� p� �) � �. (�)

where TSS =
P

i(yi � ȳ)� = RSS� and RSS =
P

i(yi � ŷi)�.
If linear model assumptions are correct, one can show that

E[denominator of (�)] = ��.

If also H� is true, one can show that

E[numerator of (�)] = ��.

If H� is true, we might expect F ⇡ �.
If Ha is true, we might expect F > �.

�� ��
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�. �� ����� � ������������ ������� ��� �������� ��� ����������?

We might test whether one specific regression coe�cient is zero or not.
For a specific j = �, . . . ,p, one can use the hypothesis test

H� : �j = � vs. Ha : �j 6= � (�)

for which the following t-statistic is needed:

t =
�̂j

SE(�̂j)
. (�)

SE(�̂j) is the standard error of �̂j.
Under H� holds t ⇠ tn�p��, where tn�p�� is the Student’s t-distribution.

�� ��
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�. D������� �� ��������� ���������

Variable selection (or model selection): the task of determining which
predictors are associated with the response.

A model contains a subset of the predictors.
For p predictors, there are �p possible models.
Many ways to choose a model in linear regression. See Ch � of ISLR� for
more details (e.g. subset selection, lasso).

Outside linear regression, this is still an active research area!

�� ��



�. M���� ��

Potential problems: i) Non-linearity
Linear regression assumes a linear relationship between the predictors
and the response.
Residual plots can be used to detect non-linearity: If no pattern is visible,
linearity is a reasonable assumption, otherwise not.
If there are non-linear associations, a simple approach is to check
whether non-linear transformations of the predictors help, such as
log(X),

p
X or X�.

�� ��



�. M���� ��

Potential problems: ii) Correlation of the error terms
The errors are assumed to be uncorrelated.
If the errors are correlated, the estimated standard errors tend to
underestimate the true standard errors.
Correlations frequently occur in the context of time series, where
observations are analyzed over time, e.g. daily temperatures.

�� ��



�. M���� ��

Potential problems: iii) Non-constant variances of the error terms
(Heteroskedasticity)

The errors are assumed to be homoskedastic (meaning their variances are
constant across observations).
The standard errors, confidence intervals, and hypothesis tests associated
with the linear model rely on this assumption.
One can identify non-constant variances in the errors (heteroskedasticity)
from the presence of a funnel shape in the residual plot.
One possible solution is to transform the response Y by using a concave
function such as log(Y) or

p
Y.

�� ��



�. M���� ��

Potential problems: iv) Outliers
An outlier is a point which is far from the value predicted by the model.
Outliers can arise for a variety of reasons, e.g., incorrect recording of an
observation during data collection.
Outliers might inflate the variance estimate, and other measures.

�� ��



�. M���� ��

Potential problems: v) Collinearity
Collinearity refers to the situation in which two or more predictors are
closely related, resulting in uncertainty in the coe�cient estimates, and
thus in the standard error for �̂j to grow.
Collinearity can also be present between more than two variables
(multicollinearity), even if no pair of variables are closely related.
The variance inflation factor (VIF) quantifies the severity of
(multi)collinearity: It measures how much the variance of an estimated
regression coe�cient is increased due to collinearity.
VIF for each variable can be computed by

VIF(�̂j) =
�

�� R�j
,

where R�j is the R
� from a regression of Xj onto all other predictors.

As a rule of thumb, VIF exceeding � indicates a large amount of
collinearity, then we should ...
�. ... drop the jth predictor;
�. ... or combine the jth with other collinear predictors together into a single
predictor.

�� ��
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�. M���� ��: E��������� ��� ��������

Consider the linear model with n > p+ �, where the vectors of the predictors
X�, . . . , Xn 2 Rp are linearly independent.

In the linear model the OLS estimator �̂OLS for � is the BLUE (Best Linear
Unbiased Estimator) if E(") = �n and Var(") = ��In, where �� > � is the
variance, and In is the n⇥ n identity matrix.
Usually, the variance �� is unknown and has to be estimated. An unbiased
estimator for �� is given by

�̂� :=
�

n�p�� ||y � X�̂||� (��)

For p = �, we can use the sample variance s� in R (command (var)), which
is for an independent sample Y�, ..., Yn with Y := �

n
Pn

i=� Yi defined by

�̂� :=
�

n��

nX

i=�

(Yi � Y)� (��)

�� ��
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�. M���� ��: E��������� ��� �������� ���������

If �̂ is almost surely (i.e. with prob. �) non-constant (�̂ is almost surely
constant if all Xi equal to X with prob. �), Jensen’s inequality gives

E(�̂) <
p

E(�̂�) =
p
�� = �. (��)

This means that �̂ is not an unbiased estimator for �, although �̂� is an
unbiased estimator for ��.

�� ��

where is either (10) or (1)

=> =



�. M���� ��: R� – E������: T�� ���� ���

We consider the linear model with p = � and analyze the advertising data set.
� adv �- read.csv("Advertising.csv")
� fit �- lm(Sales � Newspaper, data � adv)
� summary(fit)

�� ��

=>



�. M���� ��: R� – E������: R��������� ����

� ggplot(adv, aes(Newspaper, Sales)) �
� geom_point() �
� geom_smooth(method � "lm", se � F) �
� theme_minimal()

�� ��



�. M���� ��: R� – E������: R��������� ���� (������ �������)

� fit �- lm(Sales � Newspaper, data � adv)
� ggplot(adv, aes(Newspaper, Sales)) �
� geom_point() �
� geom_smooth(method � ’lm’, se � F) �
� geom_segment(aes(xend�Newspaper, yend�fit�fitted), color�’red’, alpha

��.�) �
� theme_minimal()

�� ��



�. M���� ��: R� – E������: C���������

In the plot above, the blue line has the property that the sum of the squared
red lines is minimal. Let’s compare the sum of squared errors for this optimal
fit to the fit with the line having the mean value.

� summary(fit)�df[�] � (n - p - �)
� summary(fit)�sigma * summary(fit)�df[�] � ����
� m �- mean(adv�Sales) � ��
� sum((adv�Sales - m)^�) � ����

�� ��

>

=>



�. M���� ��: R� – E������: S��������� ��

� ggplot(adv, aes(Newspaper, Sales)) �
� theme_minimal() �
� geom_point() �
� geom_abline(slope��, intercept�m, color�’blue’, size��) �
� geom_segment(aes(xend�Newspaper, yend�m), color�’red’, alpha��.�)

�� ��



�. M���� ��: R� – D��������

�� is the error variance, the variability in Y which is not explained by X�.
How much of the variability in Y is explained by X�̂?
A measure for goodness of the fit with the linear model is the coe�cient
of determination R� which is defined by

R� := TSS� RSS
TSS = �� RSS

TSS . (��)

TSS is the total sum of squares which measures the total variability before
the regression (see previous slide), defined by

TSS :=
nX

i=�

(Yi � Y)�. (��)

RSS is the residual sum of squares which measures the variability after
performing the regression, defined by

RSS := ||y � X�̂||� . (��)

�� ��

=>

O



�. M���� ��: R� – I�������������

By definition, R� is the proportion of the total variability minus the
variability after the regression, in relation to the total variability.
R� has values between � and �.
A value close to � indicates that a large proportion of the variability in the
response has been explained by the regression.
A value close to � indicates that the regression did not explain much of
the variability in the response. Maybe, because the linear model is wrong,
or the inherent error variance �� is high, or both.
In our example, we have

R� ⇡ �� ����.���
����.��� ⇡ �.���,

meaning that approximately ��.�% of the variability have been explained
by the regression.

�� ��



�. M���� ��: A������� R�

By including more (not perfectly collinear) predictors into the model will
always increase explained variation.
The adjusted R�, denoted as R�, measures as R� also how much variability
have been explained by the regression, but also takes into accounts the
number of predictors. It is defined as

R� = �� (�� R�) n� �
n� p� � = �� RSS/(n� p� �)

TSS/(n� �) . (��)

R� is smaller than R� if RSS 6= � and p > �.
As smaller p make inference easier, one should choose p such that R� is
the largest.

�� ��
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�. M���� ��: R������� �����: I���

Residual plots show the fitted values ŷi against the observed values yi, or the
predictor values xi against the residuals ei := yi � ŷi.

Residual plots are mainly useful for two things:
�. To validate/reject the suggested model.
�. To extract further information about the data.

Residual plots can have the following properties, among others:
�. The values in the residual plot are scattered around zero without a visible
trend) model assumption is reasonable.

�. The values in the residual plot exhibit a visible trend/pattern) model
assumption is NOT reasonable.

�. The scatter plot or residual plot exhibits unusual values being far away from
most of data) Outliers!

�. The magnitudes of the measurement errors are not roughly constant across
observations) Heteroskedasticity (variance heterogeneity).

�� ��



�. M���� ��: R������� �����: D��� ��� �

We create the following data consisting of ��� rows.

� � Create data
� df� �- data.frame(x��runif(n����, min��, max��))
� df��yobs �- �.� � df��x� * �.� � rnorm(n����, sd��)
�
� � Fit linear model to data and compute fitted values
� fit� �- lm(yobs � x�, data�df�)
� df��ypred �- fit��coefficients[�] � df��x� * fit��coefficients[�]
�
� � Subtract fitted values from observed values
�� df��residual �- df��yobs - df��ypred

�� ��



�. M���� ��: R������� �����: D��� ��� �

� library(ggplot�)
� � Plot line of best fit
� ggplot(df�, aes(x�, yobs)) �
� geom_point() �
� geom_smooth(method�’lm’, se�F) �
� scale_y_continuous(limits�c(-�,�))�
� labs(y�’observed y’) �
� theme_minimal()
�
�� � Plot residuals
�� ggplot(df�, aes(x�, residual)) �
�� geom_point() �
�� geom_smooth(method�’lm’, se�F) �
�� scale_y_continuous(limits�c(-�,�))�
�� theme_minimal()

No visible pattern in residual plot) Proper fit of the data using a linear model

�� ��



�. M���� ��: R������� �����: D��� ��� �

Visible pattern in the residual plot) The data are not properly fitted by the
linear model. Maybe a quadratic relationship is reasonable.

�� ��
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�. M���� ��: R������� �����: D��� ��� �

A very "unusual" value around x = ���) interpretable as an outlier.

�� ��

↓



�. M���� ��: R������� �����: D��� ��� �

Error amplitudes increase as input increases) Signal seems to be
well-modeled as a linear function, but errors are heteroskedastic.

�� ��

variance seems to increase
-



�. P����������

With coe�cient estimates �̂�, �̂�, . . . , �̂p, it is straightforward to predict the
response Yn+� at a set of predictor values xn+�,�, . . . , xn+�,p. (How?)

Three types of uncertainty associated with this prediction:
�. Inaccuracy in the coe�cient estimates �̂ — quantify uncertainty using
confidence intervals.

�. How well can the true model be captured by even the best linear model?
�. Inaccuracy in the prediction Ŷn+� — quantify uncertainty using prediction
intervals.
I Width of prediction interval incorporates both model uncertainty and

observation variance.

�� ��
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S������ �: R��������� A������� ���� R

I��� �� ���������� ����������



I���

Polynomial regression extends the simple linear model by also allowing sums
of predictors raised by powers, thus "polynomial".

In polynomial regression, the response Y is modelled depending on the
predictor X� with a polynomial function

y = �� + ��X� + ��X�� + ��X�� + · · ·+ �dXd� + ", (��)
where d 2 N is the degree of the poynomial.
The degree d describes the flexibility of the model.
(What does a polynomial of order d = � look like? Order d = �? d = �?)

�� ��
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E������ �: A ���-������ ��������

Figure �: Image by James et al. (����), based on the Income data set in R. The red dots
are the observed values of income in tens of thousand dollars and years of
education for �� individuals.

�� ��



E������ �: ������-� ����������

Figure �: Image by James et al. (����). The solid blue curve is a degree-� polynomial of
wage (in thousands of dollars) as a function of age, fit by least squares.
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E������ �: P��������� ���������� ���� ��� ����������

Figure �: Image by James et al. (����), based on the Income data set in R. The income is
displayed as a function of years of education and seniority, where linearity does
not seem appropriate. It might be reasonable to do polynomial regression with two
predictors.
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