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OVERVIEW

Based on Chapter 3 of ISL book James et al. (2021).

m For more R code examples, see R Markdown files in
https://www.statlearning.com/resources-second-edition

Section 6: Regression Analysis with R

m Linear Regression
m |dea of polynomial regression



SECTION 6: REGRESSION ANALYSIS WITH R

LINEAR REGRESSION



AN EXAMPLE - 1

Consider the data set in Advertising.csv consisting of the sales of a
product in 200 different markets, with advertising budgets for the product in
each of those markets for three different media: TV, Radio, Newspaper.

adv <- read.csv("Advertising.csv", row.names="X")
str(adv)

N

> str(adv)
'data.frame': 200 obs. of 4 variables:
$ TV : num 230.1 44.5 17.2 151.5 180.8

$ Radio : num 37.8 39.3 45.9 41.3 10.8 48.9 32.8 1
$ Newspaper: num 69.2 45.1 69.3 58.5 58.4 75 23.5 11.
$ Sales : num 22.1 10.4 9.3 18.5 12.9 7.2 11.8 13.




AN EXAMPLE - 2

We want to investigate the relationship between Sales and the total budget
spent for advertisement on TV, Radio, and Newspaper.

m Then, we sum row-wise, but exclude the last column (which is the 4th
column after we deleted the 1st column).

adv$Budget <- rowSums(adv[, -4])
str(adv)

[N

> str(adv)
'data.frame': 200 obs. of 5 variables:
$ TV : num 230.1 44.5 17.2 151.5 180.8
$ Radio : num 37.8 39.3 45.9 41.3 10.8 48.9 32.

2.8 19.
$ Newspaper: num 69.2 45.1 69.3 58.5 58.4 75 23.5 11
8 13

9.6 2.
.61 21.
2 4.8

3
$ Sales : num 22.1 10.4 9.3 18.5 12.9 7.2 11.
$ Budget . num 337 129 132 251 250




AN EXAMPLE - 3

Reasonable research questions for this data set:
m Is there a relationship between Budget and Sales?
If there is a relationship, is it linear?
How strong is the relationship between Budget and Sales?
Which media contribute to sales?
How accurately can we estimate the effect of each medium on sales?
How accurately can we predict future sales?



AN EXAMPLE - 4

ggplot(adv, aes(Budget, Sales)) +
geom_point() +
geom_smooth(method="1m") +
theme_minimal()

> W oN o

Sales

200
Budget
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LINEAR REGRESSION — MATRIX REPRESENTATION

Recall: want to estimate the relationship between Y and Xi, ..., X.
m Linear regression simplifies the task of estimating the “true” relationship
to the task of estimating p -+ 1 parameters fo, fs, . . ., Bp: ,

_Y:ﬁJ+@X1+...+Bpo+£—“‘u?s:\ol\ (1)

where the error term ¢ is a catch-all for what is missed by this model.
m For n observations

Lﬁ,‘a\\ = (X117X‘|27"'7X1P7y1)7
(A2 ‘1;) (X217X227"'7X2P7y2)7

\!

‘.'ﬁ,\‘ %“3 = (Xm,an, 000 7an7)/n),
there is the following matrix representation

y,':ﬂo+ﬁ1X,'1+---+ﬂpX,'p—|—E,', fori:1,2,...,n (2)

Ya 1T X X2 - Xop Bo €1
)23 1 X1 X2 -+ Xyp [h €2

= |.|= S+ ()
Yn 1 Xn1 Xn2 -+ Xnp Bp En

g y=XB+e (4)
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ORDINARY LEAST SQUARES (OLS)

A “good” estimator for the regression parameters 8 = (fo,. .., 8p)" € RP*"
produces small residuals.

m A residual is the difference between a response and its predicted value.
m The jth residual isy; — y; fori=1,...,n.

m (3 can be estimated by using the Ordinary Least Squares (OLS) method.
m The OLS estimator for 3 is defined to be the vector that minimizes the

residual sum of squares: residual v of gquered
A : M a2\
Bots = argminggpi ||y — X8|I (5)
=

where forany z = (z,, -+ ,2p11)" € RP*" holds ||z|? = Z + -+ - + Zj ...

m It can be shown that Bois = (X"X) "Xy (if the inverse (X"X) " exists).
| D—



ORDINARY LEAST SQUARES (OLS) - GEOMETRY

The OLS estimator Bos € RP*’ produces:
m p = 0: sample mean of the y,, ...y, (best estimate w/o predictor info)
m p = 1: “line of best fit”
m p = 2: “plane of best fit”
m p > 3: “hyperplane of best fit”

Given a line/plane/hyperplane of best fit:

m Residual is vertical displacement between point and
line/plane/hyperplane



ORDINARY LEAST SQUARES (OLS) — EXAMPLE LINE OF BEST FIT

Sales

50 100 150 200 250 300

TV

Image by James et al. (2021). “For the Advertising data, the least squares fit for
the regression of sales onto TV is shown.” The line is chosen to minimize the sum of the
squared vertical distances between each observation (shown in red) and the line.

9
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ORDINARY LEAST SQUARES (OLS) - EXAMPLE PLANE OF BEST FIT

R

Image by James et al. (2021). “In a three-dimensional setting, with two
predictors and one response, the least squares regression line becomes a plane. The
plane is chosen to minimize the sum of the squared vertical distances between each
observation (shown in red) and the plane.”
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(LINEAR) REGRESSION

Questions of interest:

1. Is at least one of the predictors Xi, Xa, ..., Xp useful in predicting the
response Y?

2. Do all the predictors help to explain Y, or is only a subset of the
predictors useful?

3. How well does the model fit the data?
4. Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?
Questions apply to regression generally, but answers might be specific to linear
regression.



1. ISTHERE A RELATIONSHIP BETWEEN THE RESPONSE AND PREDICTOR

Are all regression coefficients equal to zero?
m What would this imply about the relationship?
m One can use the hypothesis test
Ho: p1=B2=---Bp =0 Vs. Hq: f3; # O for at least one j, (6)
for which the following F-statistic is needed:

_ (155—RSS)/p. .
wulok \(;SRSS/(n—p_—]) = J‘P,,,A\&e I

where TSS = >.(yi — ¥)* = RSSo and RSS = >(vi — ¥i)*.
m If linear model assumptions are correct, one can show that

@)

E[denominator of (7)] = ¢°.

m If also H, is true, one can show that

E[numerator of (7)] = ¢°.

m If Ho is true, we might expect F ~ 1.
m If Hq is true, we might expect F > 1.
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1. IS THERE A RELATIONSHIP BETWEEN THE RESPONSE AND PREDICTORS?

We might test whether one specific regression coefficient is zero or not.
m For a specificj = 0,...,p, one can use the hypothesis test

HOZ/B]‘:O VS. HQZ,B]‘#O (8)
for which the following t-statistic is needed:
b
SE(5))

b e o

t= (9)

m SE(3)) is the standard error of j;.
m Under Ho holds t ~ t,_p_, where t,_,_, is the Student’s t-distribution.

3 40



2. DECIDING ON IMPORTANT VARIABLES

Variable selection (or model selection): the task of determining which
predictors are associated with the response.

m A model contains a subset of the predictors.
m For p predictors, there are 2” possible models.

m Many ways to choose a model in linear regression. See Ch 6 of ISLR2 for
more details (e.g. subset selection, lasso).

Outside linear regression, this is still an active research area!

% 40



3. MODEL FIT

Potential problems: i) Non-linearity
m Linear regression assumes a linear relationship between the predictors
and the response.
m Residual plots can be used to detect non-linearity: If no pattern is visible,
linearity is a reasonable assumption, otherwise not.

m If there are non-linear associations, a simple approach is to check
whether non-linear transformations of the predictors help, such as
log(X), VX or X2.



3. MODEL FIT

Potential problems: ii) Correlation of the error terms
m The errors are assumed to be uncorrelated.

m If the errors are correlated, the estimated standard errors tend to
underestimate the true standard errors.

m Correlations frequently occur in the context of time series, where
observations are analyzed over time, e.g. daily temperatures.
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3. MODEL FIT

Potential problems: iii) Non-constant variances of the error terms
(Heteroskedasticity)

m The errors are assumed to be homoskedastic (meaning their variances are
constant across observations).

m The standard errors, confidence intervals, and hypothesis tests associated
with the linear model rely on this assumption.

m One can identify non-constant variances in the errors (heteroskedasticity)
from the presence of a funnel shape in the residual plot.

m One possible solution is to transform the response Y by using a concave
function such as log(Y) or V/Y.

7 40



3. MODEL FIT

Potential problems: iv) Outliers
m An outlier is a point which is far from the value predicted by the model.

m Outliers can arise for a variety of reasons, e.g., incorrect recording of an
observation during data collection.

m Outliers might inflate the variance estimate, and other measures.
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3. MODEL FIT

Potential problems: v) Collinearity

m Collinearity refers to the situation in which two or more predictors are
closely related, resulting in uncertainty in the coefficient estimates, and
thus in the standard error for j; to grow.

m Collinearity can also be present between more than two variables
(multicollinearity), even if no pair of variables are closely related.
m The variance inflation factor (VIF) quantifies the severlty of

(multl)colllnearlty It measures how much the variance of an estimated
regression coefficient is increased due to colllnearlty

m VIF for each variable can be computed by

PN 1
J

where R? is the R? from a regression of X; onto all other predictors.

m As a rule of thumb, VIF exceeding 5 indicates a large amount of
collinearity, then we should ...

1. ... drop the jth predictor;
2. ... or combine the jth with other collinear predictors together into a single
predictor.
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3. MODEL FIT: ESTIMATING THE VARIANCE

Consider the linear model with n > p + 1, where the vectors of the predictors
Xi1,...,Xn € RP are linearly independent.

m In the linear model the OLS estimator Bo.s for 3 is the BLUE (Best Linear
Unbiased Estimator) if E(¢) = 0, and Var(e) = o°I,, where o> > 0 is the
variance, and I, is the n x n identity matrix.

m Usually, the variance o° is unknown and has to be estimated. An unbiased

: 2 foo of vaersed cdicted
estimator for o° is given by P A resp-
e (10)
o= —
n—p—1 4

m For p = 0, we can use the sample variance s> in R (command (var)), which
is for an independent sample Y, ..., Y, with Y := 1 37 V; defined by

n
2 1 Z V)2

20 40



3. MODEL FIT: ESTIMATING THE STANDARD DEVIATION

J'\" e T G} & el (o) oc ()
(<2 w

)
m If 5 is almost surely (i.e. with prob. 1) non-constant (5 is almost surely
constant if all X; equal to X with prob. 1), Jensen’s inequality gives

E(6) < VE(8?) = Vo2 = 0. (12)
—— -

This means that & is not an unbiased estimator for ¢, although 52 is an
unbiased estimator for o?.
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3. MODEL FIT: R?2 - EXAMPLE: THE DATA SET

We consider the linear model with p = 1and analyze the advertising data set.

adv <- read.csv("Advertising.csv")
fit <- Ulm(Sales ~ Newspaper, data = adv)
—————

Noa

3| summary(fit
call:
Im(formula = sales ~ Newspaper, data = adv)
Residuals:
Min 1@ Median 3Q Max

-11.2272 -3.3873 -0.8392 3.5059 12.7751

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.35141 0.62142 19.88 < 2e-16 ***
Newspaper 0.05469 0.01658 3.30 0.00115 **

Signif. codes:
0 *¥¥%’ 0,001 ‘¥*’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

Residual standard error: 5.092 on 198 degrees of freedom
Multiple R-squared: 0.05212, Adjusted R-squared: 0.04733
F-statistic: 10.89 on 1 and 198 DF, p-value: 0.001148

22 40



W N o

3. MODEL FIT: R? - EXAMPLE: REGRESSION LINE

ggplot(adv, aes(Newspaper, Sales)) +
geom_point() +
geom_smooth(method = "lm", se = F) +
theme_minimal()

Sales

10

0 30 60 a0
Newspaper
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3. MODEL FIT: R? - EXAMPLE: REGRESSION LINE (ERRORS VISIBLE)

fit <- lm(Sales ~ Newspaper, data = adv)
ggplot(adv, aes(Newspaper, Sales)) +
geom_point() +

geom_smooth(method = "lm’, se = F) +
geom_segment(aes(xend=Newspaper, yend=fit$fitted), color="red’, alpha
=0.5) +

theme_minimal()

0 30 60 a0
Newspaper
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3. MODEL FIT: R? - EXAMPLE: COMPARISON

In the plot above, the blue line has the property that the sum of the squared
red lines is minimal. Let's compare the sum of squared errors for this optimal
fit to the fit with the line having the mean value.

summary(fit)$df[2] # (n - p - 1)
summary(fit)$sigma * summary(fit)$df[2] # 1008
m <- mean(adv$Sales) # 14
sum((adv$Sales - m)"2) # 5417

——

S
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3. MODEL FIT: R? - EXAMPLE: SUBOPTIMAL FIT

ggplot(adv, aes(Newspaper, Sales)) +
theme_minimal() +
geom_point() +
geom_abline(slope=0, intercept=m, color='blue’, size=1) +
geom_segment(aes(xend=Newspaper, yend=m), color="red’, alpha=e.5)
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3. MODEL FIT: R? — DEFINITION

m o is the error variance, the variability in Y which is not explained by X3.
m How much of the variability in Y is explained by X3?
m A measure for goodness of the fit with the linear model is the coefficient
of determination R*> which is defined by
_ TSS—RSS
TSS

m TSS is the total sum of squares which measures the total variability before
the regression (see previous slide), defined by

R : 1- (13)

TSS = i(Yi = 7P (14)

i=1

m RSS is the residual sum of squares which measures the variability after
performing the regression, defined by

RSS = |ly — XB|. (15)
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3. MODEL FIT: R? - INTERPRETATION

m By definition, R? is the proportion of the total variability minus the
variability after the regression, in relation to the total variability.

m R? has values between o0 and 1.

m Avalue close to 1indicates that a large proportion of the variability in the
response has been explained by the regression.

m Avalue close to o indicates that the regression did not explain much of
the variability in the response. Maybe, because the linear model is wrong,
or the inherent error variance o? is high, or both.

m In our example, we have

1008.311

RRx~1— —— 2
5417.149

~ 0.814,

meaning that approximately 81.4% of the variability have been explained
by the regression.
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3. MODEL FIT: ADJUSTED R?

m By including more (not perfectly collinear) predictors into the model will
always increase explained variation.

m The adjusted R?, denoted as ﬁz, measures as R? also how much variability
have been explained by the regression, but also takes into accounts the

number of predictors. It is definedas _ | — £ a2\ __
- TS a-p-y

N B _ . a_pn nN—1 RSS/(n—p—1)
2‘*‘5‘R_1 ( R')n—p—1_1 TSS/(n —1) e

m R’ is smaller than R? if RSS # 0 and p > o.

m As smaller p make inference easier, one should choose p such that Ris
the largest.
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3. MODEL FIT: RESIDUAL PLOTS: IDEA

Residual plots show the fitted values §; against the observed values y;, or the
predictor values x; against the residuals e; := y; — ¥;.

m Residual plots are mainly useful for two things:

1. To validate/reject the suggested model.
2. To extract further information about the data.

m Residual plots can have the following properties, among others:
1. The values in the residual plot are scattered around zero without a visible
trend = model assumption is reasonable.

2. The values in the residual plot exhibit a visible trend/pattern = model
assumption is NOT reasonable.

3. The scatter plot or residual plot exhibits unusual values being far away from
most of data = Outliers!

4. The magnitudes of the measurement errors are not roughly constant across
observations = Heteroskedasticity (variance heterogeneity).
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3. MODEL FIT: RESIDUAL PLOTS: DATA SET 1

We create the following data consisting of 100 rows.

# Create data
df1 <- data.frame(xi=runif(n=100, min=e, max=2))
df1$yobs <- 0.1 + dfi$xa * 1.5 + rnorm(n=100, sd=1)

# Fit linear model to data and compute fitted values
fit1 <- 1m(yobs ~ x1, data=df1)
df1$ypred <- fiti$coefficients[1] + dfi$x1 » fita$coefficients[2]

# Subtract fitted values from observed values
df1$residual <- dfi$yobs - dfi$ypred

31
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3. MODEL FIT: RESIDUAL PLOTS: DATA SET 1

library(ggplot2)

# Plot line of best fit

ggplot(df1, aes(x1, yobs)) +
geom_point() +
geom_smooth(method="1m", se=F) +
scale_y_continuous(limits=c(-2,6))+
labs(y="observed y') +
theme_minimal()

VW N DGR W N o
observed y

# Plot residuals o
1| ggplot(dfi, aes(x1, residual)) +

2| geom_point() +

13|  geom_smooth(method="1m’, se=F) +

w| scale_y_continuous(limits=c(-2,6))+
15 theme_minimal()

o
residual

No visible pattern in residual plot = Proper fit of the data using a linear model
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3. MODEL FIT: RESIDUAL PLOTS: DATA SET 2
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Visible pattern in the residual plot = The data are not properly fitted by the
linear model. Maybe a quadratic relationship is reasonable.
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3. MODEL FIT: RESIDUAL PLOTS: DATA SET 3

200 .
L]
100
8 0
=
= J
© 100
-200
L3
L)
-300 S
0 50 100 150 200
input

A very "unusual" value around x = 150 = interpretable as an outlier.
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3. MODEL FIT: RESIDUAL PLOTS: DATA SET 4

verewnie seems to increcse
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Error amplitudes increase as input increases = Signal seems to be
well-modeled as a linear function, but errors are heteroskedastic.
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4. PREDICTIONS

With coefficient estimates fo, 51, . . ., Bp, it is straightforward to predict the
response Yy, at a set of predictor values X411, . . ., Xnj1,p. (HOW?)
e

N A A

~ n
P(LA(L‘HQA \(nu = F" + B\ x"‘"‘.\ r E; x"“‘z € F?’ Favisy

N
+ P FP IKO\H.P

Three types of uncertainty associated with this prediction:

1.

Inaccuracy in the coefficient estimates 3 — quantify uncertainty using
confidence intervals.

. How well can the true model be captured by even the best linear model?
. Inaccuracy in the prediction Y,.. — quantify uncertainty using prediction

intervals.

» Width of prediction interval incorporates both model uncertainty and
observation variance.
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SECTION 6: REGRESSION ANALYSIS WITH R

IDEA OF POLYNOMIAL REGRESSION



IDEA

Polynomial regression extends the simple linear model by also allowing sums
of predictors raised by powers, thus "polynomial".
m In polynomial regression, the response Y is modelled depending on the
predictor X; with a polynomial function
Y = Bo+ BiXa + BXi + BX3 + -+ + BaXi + e, (17)

where d € N is the degree of the poynomial.
m The degree d describes the flexibility of the model.
m (What does a polynomial of order d = 2 look like? Order d = 3? d = 4?)

=% r=> &
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EXAMPLE 1: A NON-LINEAR FUNCTION
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Image by James et al. (2021), based on the Income data set in R. The red dots
are the observed values of income in tens of thousand dollars and years of
education for 30 individuals.
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EXAMPLE 2: DEGREE-4 POLYNOMIAL
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Image by James et al. (2021). The solid blue curve is a degree-4 polynomial of
wage (in thousands of dollars) as a function of age, fit by least squares.
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EXAMPLE 3: POLYNOMIAL REGRESSION WITH TWO PREDICTORS

Image by James et al. (2021), based on the Income data set in R. The income is
displayed as a function of years of educationand seniority, where linearity does
not seem appropriate. It might be reasonable to do polynomial regression with two
predictors.
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