
STA ���A – Fundamentals of Statistical
Data Science
Department of Statistics; University of California, Davis

Instructor: Dr. Akira Horiguchi (ahoriguchi@ucdavis.edu)
A�� TA: Zhentao Li (ztlli@ucdavis.edu)
A�� TA: Zijie Tian (zijtian@ucdavis.edu)
A�� TA: Lingyou Pang (lyopang@ucdavis.edu)

Section �: Basics in probability theory

Spring ���� (Mar �� – Jun ��), MWF, ��:�� PM – ��:�� PM, Young ���



S������ �: B����� �� ����������� ������



Section �: Overview

� Section �: Basics in probability theory
Section �.�: Probability measure and random variables
Section �.�: PMF/PDF and CDF
Section �.�: Some distributions
Section �.�: Expected value
Section �.�: Variance and covariance
Section �.�: Conditional probability and independence

The prereq for this class is either STA ��� (regression) or STA ��� (ANOVA), so I
expect you have already learned everything in this slide deck.

If you need a refresher on probability, you can refer to this free textbook:
https://www.probabilitycourse.com/
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Section �.� – Probability measure - Motivation

Probability is a way to quantify randomness and/or uncertainty.
e.g., coin flips, dice rolls, stocks, weather.
Rules of probability should be intuitive and self-consistent.
Self-consistent: the rules shouldn’t lead to contradictions.
Thus these rules must be constructed in a certain way.
Suppose we want to assign a probability to each event in a set of possible
events.
We would like, at the very least:
�. each probability to be a value between � and � (inclusive)
�. the probability assigned to the full set of events to be �
�. the probability assigned to the empty set to be �

We need more restrictions to ensure self-consistency.
The following definition will lead to intuitive and self-consistent rules of
probability.

� ��
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Section �.� – Probability measure - Definition

Definition �: Probabilty measure P(·)
For a nonempty set ⌦, the set function P : ⌦ ! [�, �] is a probability measure, if

P(⌦) = �,
for any pairwise disjoints sets A�, A�, · · · ✓ ⌦ (i.e. Ai \ Aj = ; for all i, j with
i 6= j), holds:

P
⇣[

i2N
Ai
⌘
=
X

i2N
P(Ai). (�)

This definition fulfills the three properties from the previous slide:
P(⌦) = �: the probability of the biggest possible set is equal to �.
Property (�) allows us to add probabilities of disjoint sets.
I Disjoint means having no shared elements.
I (Property (�) is called the countable additivity property.)
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Section �.� – Probability measure - Properties

Definition � implies the following additional properties:

Properties of P(·)
With ; being the empty set, with some sets A,B ⇢ ⌦, and with Ac = ⌦\A
denoting the complement of A, holds,
i) P(;) = �;
ii) P(A [ B) = P(A) + P(B) if A \ B = ;;
iii) P(Ac) = �� P(A);
iv) P(B \ A) = P(B)� P(A) if A ✓ B;
v) P(A)  P(B) if A ✓ B.

(Pictures)
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Section �.� – Random variables - Notion

Probability measures allow us to characterize the "randomness" of events.
But we are often interested in more than just probabilities. For example:
I the number of heads from three (independent) flips of some coin
I the sum of the faces after throwing two dice
I the lifetime of a battery

We call each of these a random variable because they take on di�erent
values based on random events.
The probability that a random variable is a certain value will depend on
the probabilities of individual events.

� ��
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Section �.� – Motivation

When doing probability calculations, rather than use probability measures
(which are functions of sets), it is often easier to describe a probability
distribution using functions of single variables
�. PMF/PDF
�. CDF

� ��



Section �.� – PMF/PDF - concept

The idea behind a PMF/PDF is to assign probabilities to the possible values of a
random variable.

The concept is di�erent for discrete and continuous random variables.

� ��



Section �.� – PMF/PDF - discrete and continuous case

A random variable X is discrete if its range is finite or countably infinite.
Examples:
�. number of heads after two coin flips,
�. number of coin flips needed before a heads turns up.

Here probabilities can be assigned to each realizable value. Examples:
�. For {�, �, �} (finite), we can assign probabilities �/�, �/�, and �/�.
�. For N (countably infinite), we can assign probabilities (�/�)k to each k 2 N.

The probability mass function (PMF) fX of a discrete random variable X
assigns probabilities to each realizable value of X. Examples:
�. fX(�) = �/�, fX(�) = �/�, and fX(�) = �/�.
�. fX(k) = (�/�)k for each k 2 N.

Here fX(a) is “the probability that X equals a.”
The probability P(X 2 A) that X lies in a set A can be calculated by

P(X 2 A) =
X

a2A
fX(a), with fX(a) := P(X = a). (�)

It is common to plot the PMF.

� ��
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Section �.� – PMF/PDF - discrete and continuous case

A random variable X is continuous if its range is uncountably infinite.
Examples: the lifetime of a battery, the lifetime of a person,
the time it takes you to finish the first midterm exam
For any value in the range of a continuous random variable X, the
probability that X is that value must be zero. Why?
I If uncountably many values are assigned positive probability, the sum of

those values would then be infinity!

For a continuous random variable X, at any value a we have P(X = a) = �.
The probability density function (PDF) fX of a continuous random variable
X describes how likely it is for X to lie a set A of values:

P(X 2 A) =
Z

A
fX(s)ds. (�)

It is common to plot the PDF.
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Section �.� – PMF/PDF - discrete and continuous case

From the properties of probability measures, it follows that any PMF fX of a
discrete random variable X must satisfy both
�. fX(x) � � for all x, and
�.
P

all x fX(x) = �.

Similarly, it follows that any PDF fX of a continuous random variable X must
satisfy both
�. fX(x) � � for all x, and
�.
R
all x fX(x) dx = �.

�� ��
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Section �.� – CDF

The cumulative distribution function (CDF) of a random variable X is the
function FX : R ! [�, �] defined by

FX(a) := P(X  a), a 2 R. (�)

This is “the probability that X is less than or equal to a.”
Definition holds regardless of whether X is continuous or discrete.
In the discrete case – recall Eq. (�) – holds for any a 2 R,

FX(a) =
X

sa
fX(s) .

In the continuous case – recall Eq. (�) – holds for any a 2 R,

FX(a) =
Z a

�1
fX(s) ds.

From the definition in Eq. (�) come the following properties:
�. The function FX is (right-continuous) and monotonically increasing,
�. lima!�1 FX(a) = �,
�. lima!1 FX(a) = �.

For any a,b 2 R with b > a holds,
P(a < X  b) = FX(b)� FX(a) .
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Section �.� – CDF - relationship to PMFs

Discrete random variables

�� ��
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Section �.� – CDF - relationship to PDFs

Continuous random variables

�� ��

PDF fx(a)
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Section �.� – Discrete case - Uniform distr.

A random variable X with values in a finite set M is uniformly distributed if each
element in M has the same probability:

P(X = k) = �
#M for all k 2 M

Such distributions occur when all possible outcomes are equally likely.
We write X ⇠ U(M) or X ⇠ Unif (M).
Nine random draws in R:
sample(c(�,�,�,�,�,�), size��, replace�TRUE)

�� ��



Section �.� – Discrete case - Bernoulli distr.

A random variable X is Bernoulli distributed with parameter p 2 (�, �), if
P(X = �) = p and P(X = �) = �� p.

For when our random experiment has only two possible outcomes
("success" and "failure").
Example: flip a coin with probability p of heads ("success"). Is it heads?
We write X ⇠ Berp or X ⇠ Bern(p).
Nine random draws in R: rbinom(n��, size��, prob��/�)

�� ��
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Section �.� – Discrete case - Binomial distr.

A random variable X is Binomial distributed with parameters n 2 N and
p 2 (�, �) if

P(X = k) =
 
n
k

!
pk(�� p)n�k for all k = �, . . . ,n.

We think of n as the number of experiments and p the success probability.
In the above equation, k is the number of successes.
For measuring the probability of the number of successes of n
independent Bernoulli experiments with parameter p.
Example: flip a coin n times, each flip with probability p of heads
("success"). How many heads?
We write X ⇠ Binn,p or X ⇠ Bin(n,p).
A random draw in R: rbinom(n��, size��, prob��.��) |� sum()

�� ��
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Section �.� – Continuous case - Uniform distr.

A random variable X is uniformly distributed on an interval M = (a,b), with
b > a, if the PDF has the form

fX(x) =
�

b� a for all x 2 (a,b).

Such distributions occur when all (uncountably many) possible outcomes
are equally likely.
The interval M can also instead be [a,b), or (a,b], or [a,b].
Here we also write X ⇠ U(M) or X ⇠ Unif (M).
Nine random draws in (�, �) in R: runif(n��, min��, max��)

�� ��
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Section �.� – Continuous case - Normal distr.

A random variable X is normally distributed with parameters µ 2 R and �� > �,
if the PDF has the form

fX(x) =
�

�
p
�⇡
e� �

� (
x�µ
� )� for all x 2 R.

This distribution appears often in this class, in future classes, and in life!
We write X ⇠ N(µ,��). We also call it Gaussian distributed.
Thereby, E(X) = µ (location parameter), and Var(X) = �� (squared scale).
If X ⇠ N(�, �), the distribution of X is said to be standard normal.
Nine random draws in R: rnorm(n��, mean��, sd��)

PDF and CDF of X ⇠ N(�, �), Y ⇠ N(�, �), Z ⇠ N(�, �)
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Section �.� – Expected value - Introduction

The expected value of a random variable is the weighted average of all of its
values, where the weights are the probabilities that these values occur.

Definition �: Expected value E(·)
Let X be a random variable. Then, the expected value of X is in the discrete case
and in the continuous case (given the PDF fX) is defined as

E(X) =
X

all k
P(X = k) · k resp. E(X) =

Z

all s
fX(s) · sds . (�)

The expected value of a random variable sometimes does not exist if, for
example, the random variable is continuous and the weights are "large"
for large values of the random variable (e.g. E(X) =

R1
�

�
s� · sds = 1).

�� ��
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Section �.� – Expected value - Calculating expected value by hand

Calculate E(X) with PDF fY(a) = �
�a

� where a 2 [�, �]

�� ��
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Section �.� – Expected value - Calculation tools

Properties of E(·)
Let c 2 R be a constant, and let X, Y be random variables for which their
expected values E(X) and E(Y) exists. Then, the following rules hold.
i) E(c) = c;
ii) E(cX) = cE(X);
iii) E(X + Y) = E(X) + E(Y).

Example with c = �, E(X) = �, E(Y) = �

�� ��

-

i) E(z) = 2

ii) E(2X) = 2 E(X) = 2

iii) E(X +Y) = E(X) + E(Y) = 1 + 5 = 6

EX + EY
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Section �.� – Variance - Introduction

Heuristics

�� ��
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Section �.� – Variance - Definition and properties

The variance of a random variable is the expected squared deviation of its
values to its expected value.

Definition �: Variance Var(·)
Let X be a random variable with E(X�) < 1. Then the variance of X is defined as

Var(X) := E[{X � E(X)}�]. (�)

Think of Var(X) as “how much X varies about its mean.” We can deduce:
Var(X) � �.
Var(X) = �) X is constant.
The variance of X can also be calculated as

Var(X) = E(X�)� (E(X))�. (�)

�� ��
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Section �.� – Variance - Calculation tools

Properties of Var(·)
Let c 2 R be a constant, and let X be a random variable with E(X�) < 1. Then
i) Var(c) = �;
ii) Var(X + c) = Var(X);
iii) Var(cX) = c�Var(X);

Recall intuition: Var(X) is “how much X varies about its mean.”

Example with c = �, Var(X) = �, Var(Y) = �.

�� ��

i) Var (5) =0

ii) Var (X + 5) = Var(X) =/

iii) Var(5x) = 25 Var(X) = 25



Section �.� – Covariance and correlation - Motivation

Expected value and variance help characterize the distribution of a single
random variable X.

Now suppose we want to characterize the relationship between two random
variables X and Y.

A complete characterization requires assigning probabilities to every
possible pair of values that (X, Y) could be.
Simpler characterizations are the covariance and correlation of X and Y.

�� ��



Section �.� – Covariance - Introduction

Heuristics
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Section �.� – Covariance - Definition and properties

Definition �: Covariance Cov(·, ·)
Let X, Y be random variables with E(X�), E(Y�) < 1. Then the covariance
between X and Y is defined as

Cov(X, Y) := E((X � E(X))(Y � E(Y))) . (�)

The covariance between X and Y can also be calculated as

Cov(X, Y) = E(XY)� E(X)E(Y) . (�)

We say X and Y are uncorrelated if Cov(X, Y) = �. Then X and Y have no
linear relationship, and E(XY) = E(X)E(Y).
Cov(X, Y) > � indicate a positive linear relationship between X and Y.
Cov(X, Y) < � indicate a negative linear relationship between X and Y.
Covariance is symmetric: Cov(X, Y) = Cov(Y, X).

�� ��



Section �.� – Correlation coe�cient

Definition �: Correlation coe�cient ⇢(·, ·)
Let X, Y be random variables with E(X�), E(Y�) < 1. Then, the correlation
coe�cient between X and Y is defined as, provided Var(X) > � and Var(Y) > �,

⇢(X, Y) := Cov(X, Y)p
Var(X)

p
Var(Y)

2 [��, �] . (��)

⇢(X, Y) = �) between X and Y is no linear relationship.
⇢(X, Y) = �� (�) ) all values of X and Y lie on a line with negative
(positive) slope.
If ⇢(X, Y) is close to -� (�), there is a strong negative (positive) linear
relationship between X and Y.
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Section �.� – Variance and covariance - More calculation tools

Properties of Var(·) and Cov(·, ·)
Let c 2 R be a constant, and let X, Y, Z be random variables with E(X�) < 1,
E(Y�) < 1, and E(Z�) < 1. Then
iv) Var(X) = Cov(X, X)
v) Var(X + Y) = Var(X) + Var(Y) + �Cov(X, Y)
vi) Cov(X, Y) = Cov(Y, X)
vii) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z) and Cov(cX, Z) = cCov(X, Z)

(Property vii says Cov(·, ·) is linear in its first argument. Because Cov(·, ·) is
symmetric, it is also linear in its second argument. Thus we call it bilinear.)

Example with c = �, Var(X) = �, Var(Y) = �, Cov(X, Y) = �/�.

�� ��
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Section �.� – Conditional probability - Introduction

Heuristics
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Section �.� – Definition and properties

An event is a subset of the sample space ⌦.

Definition �: Conditional probability
For events A,B ✓ ⌦, the conditional probability of A given B is defined by

P(A|B) =
(

P(A\B)
P(B) , if P(B) > �,
�, if P(B) = �.

(��)

Events A and B are called independent if

P(A \ B) = P(A)P(B). (��)

Here knowing B provides no information about A, and vice versa.
Equivalently, events A and B are independent if P(A|B) = P(A).
Random variables X and Y are called independent if for all sets A,B holds,

P(X 2 A, Y 2 B) = P(X 2 A)P(Y 2 B). (��)

Independent random variables are uncorrelated.
But uncorrelated random variables are not necessarily independent!
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