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Section 1: Overview
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The prereq for this class is either STA 108 (regression) or STA 106 (ANOVA), so |
expect you have already learned everything in this slide deck.

m If you need a refresher on probability, you can refer to this free textbook:
https://www.probabilitycourse.com/



SECTION 4: BASICS IN PROBABILITY THEORY

SECTION 4.1: PROBABILITY MEASURE AND RANDOM VARIABLES



Section 4.1 - Probability measure - Motivation

Probability is a way to quantify randomness and/or uncertainty.
m e.g., coin flips, dice rolls, stocks, weather.
m Rules of probability should be intuitive and self-consistent.
m Self-consistent: the rules shouldn't lead to contradictions.
m Thus these rules must be constructed in a certain way.

m Suppose we want to assign a probability to each event in a set of possible
events.
m We would like, at the very least:

1. each probability to be a value between o and 1 (inclusive)
2. the probability assigned to the full set of events to be 1
3. the probability assigned to the empty set to be o

m We need more restrictions to ensure self-consistency.

The following definition will lead to intuitive and self-consistent rules of
probability.



Section 4.1 - Probability measure - Definition

Definition 1: Probabilty measure P(-)

For a nonempty set Q, the set function P Q — [0,1] is a probability measure, if
F

mP(Q) = Omga —— A 3Aq do ~ot overlop

m for any pairW|se disjoints sets Aq, Ay, --- C Q (i.e. A NA; =0 foralli,jwith
I 75]), holds: \I‘IL\:QI‘ MP+1 set

P(UA,-) =" PA). (1)
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This definition fulfills the three properties from the previous slide:
m P(Q) = 1: the probability of the biggest possible set is equal to 1.

m Property (1) allows us to add probabilities of disjoint sets.

» Disjoint means having no shared elements.
> (Property (1) is called the countable additivity property.)



Section 4.1 - Probability measure - Properties

Definition 1 implies the following additional properties:

Properties of P(-)

With () being the empty set, with some sets A, B C Q, and with A° = Q\A
denoting the complement of A, holds, S

i) P(0) =o; S A wMP‘LMLA+ !
ii) P(AUB) = P(A) + P(B) if AN B = 0;
iii) P(AS) = 1 — P(A):
iv) P(B\ A) = P(B) — P(A) if A C B;
v) P(A) < P(B) if A C B.
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Section 441 - Random variables - Notion

Probability measures allow us to characterize the "randomness" of events.

m But we are often interested in more than just probabilities. For example:
» the number of heads from three (independent) flips of some coin
» the sum of the faces after throwing two dice
> the lifetime of a battery
m We call each of these a random variable because they take on different
values based on random events.

m The probability that a random variable is a certain value will depend on
the probabilities of individual events.



SECTION 4: BASICS IN PROBABILITY THEORY

SECTION 4.2: PMF/PDF AND CDF



Section 4.2 - Motivation

When doing probability calculations, rather than use probability measures
(which are functions of sets), it is often easier to describe a probability
distribution using functions of single variables

1. PMF/PDF
2. CDF



Section 4.2 - PMF/PDF - concept

The idea behind a PMF/PDF is to assign probabilities to the possible values of a
random variable.

m The concept is different for discrete and continuous random variables.



Section 4.2 - PMF/PDF - discrete and continuous case

A random variable X is discrete if its range is finite or countably infinite.

m Examples:

1. number of heads after two coin flips,
2. number of coin flips needed before a heads turns up.

m Here probabilities can be assigned to each realizable value. Examples:
1. For {@02})(finite), we can assign probabilities@/s, and 1/4.
2. For N (countably infinite), we can assign probabilities (1/2)% to each k € N.

m The probability mass function (PMF) fx of a discrete random variable X

assigns probabilities to_each realizable value of X. Examples:
1Fto =175 and fx(2) = 1/4.

2. fx(R) = (1/2)k foreach k € N.
Here fx(a) is “the probability that X equals a.”
m The probability P(X € A) that X lies in a set A can be calculated by

PXcA)=> fi(a), with fx(a):=P(X=a). (2)

acA

m It is common to plot the PMF.



Section 4.2 - PMF/PDF - discrete and continuous case

A random variable X is continuous if its range is uncountably infinite.

m Examples: the lifetime of a battery, the lifetime of a person,
the time it takes you to finish the first midterm exam
m For any value in the range of a continuous random variable X, the
probability that X is that value must be zero. Why?
» If uncountably many values are assigned positive probability, the sum of
those values would then be infinity!
—= m For a continuous random variable X, at any value a we have P(X = a) = o.
=4 =5

m The probability density function (PDF) fx of a continuous random variable

X describes how likely it is for X to lieA;a;set A of values:

“n PDF
P(X e A) = [ Fu(s)ds. ©)

cA )

m It is common to plot the PDF.



Section 4.2 - PMF/PDF - discrete and continuous case

From the properties of probability measures, it follows that any PMF fx of a
discrete random variable X must satisfy both

1. fx(x) > ofor all x, and
2. >k fx(x) =1

Similarly, it follows that any PDF fx of a continuous random variable X must
satisfy both

1. fx(x) > o for all x, and
—2. [ () dx =1



Section 4.2 - CDF

The cumulative distribution function (CDF) of a random variable X is the
function Fx: R — [0, 1] defined by
= &
Fx(a) =P(X<a), aeR. (4)
This is “the probability that X is less than or equal to a.”

m Definition holds regardless of whether X is continuous or discrete.
m In the discrete case - recall Eq. (2) - holds for any a € R,

Fe(a) = S f(s).

m In the continuous case - recall Eq. (3) - holds for any a € R,
a
Fx(a) = / fx(s) ds.

m From the definition in Eq. (4) come the following properties:
1. The function Fy is (right-continuous) and monotonically increasing,
2. limg_s _ oo Fx(a) = 0, —_—
3. lima—eo Fx(a) = 1.
m Foranya,b e Rwithb >aholds, (pporle CDF ot @

P(a < X <b) :m —m.
R B e i A
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Section 4.2 - CDF - relationship to PMFs

Discrete random variables
PME P (=) cof  P(x£e)
([ —>
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Section 4.2 — CDF - relationship to PDFs

Continuous random variables

POF £, (o)
o :
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SECTION 4: BASICS IN PROBABILITY THEORY

SECTION 4.3: SOME DISTRIBUTIONS



Section 4.3 - Discrete case - Uniform distr.

A random variable X with values in a finite set M is uniformly distributed if each
element in M has the same probability:

P(x:k):#%M forallk e M

m Such distributions occur when all possible outcomes are equally likely.
m We write X ~ U(M) or X ~ Unif(M).

m Nine random draws in R:
sample(c(1,2,3,4,5,6), size=9, replace=TRUE)

14 31



Section 4.3 - Discrete case - Bernoulli distr.

A random variable X is Bernoulli distributed with parameter p € (0,1), if
P(X=1)=pand P(X=0)=1—p.
m For when our random experiment has only two possible outcomes
("success" and "failure").
m Example: flip a coin with probability p of heads ("success"). Is it heads?

m We write X ~ Ber,, or X ~ Bern(p).

m Nine random draws in R: rbinom(n=9, size=1, prob=1/3)

—
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Section 4.3 - Discrete case - Binomial distr.

A random variable X is Binomial distributed with parameters n € N and
f T 3
pe (071) if L &\ 2‘:\"‘;7 (23:(2)3“1 =3 sutcomes it | success
) !

-t \

P(X = k) = Z)pkﬁ —p)"* forallk=o,....n.

,1} "'D"‘\ 9,,-\90:\4@,&

m We think of n as the number of experiments and p the success probability.
In the above equation, k is the number of successes.

m For measuring the probability of the number of successes of n
independent Bernoulli experiments with parameter p.

m Example: flip a coin n times, each flip with probability p of heads
("success"). How many heads?

m We write X ~ Bin,, or X ~ Bin(n, p).

m Arandom draw in R: rbinom(n=3, size=1, prob=0.25) |> sum()
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Section 4.3 - Continuous case - Uniform distr.

A random variable X is uniformly distributed on an interval M = (a, b), with
b > q, if the PDF has the form :

Y
L ax =\
1 2 Adx
fx(x) = b—a forallx € (a7b)) o b2
fo) R otwerwse

m Such distributions occur when all (uncountably many) possible outcomes
are equally likely.

m The interval M can also instead be [a, b), or (a, b], or [a, b].
m Here we also write X ~ U(M) or X ~ Unif(M).

m Nine random draws in (3,5) in R: runif(n=9, min=3, max=5)



Section 4.3 - Continuous case - Normal distr.

A random variable X is normally distributed with parameters . € R and ¢ > 0,
if the PDF has the form [

fx(x) =

me "

e 30 forallx e R. “mw

g
1 “aigme $74
a\2m
—
m This distribution appears often in this class, in future classes, and in life!
m We write X ~ N(u, 0*). We also call it Gaussian distributed.
m Thereby, E(X) = u (location parameter), and Var(X) = o (squared scale).
m If X ~ N(0,1), the distribution of X is said to be standard normal.

m Nine random drawst rnorm(n=9, mean=2, sd=1) N(Z \ )
/“ v
PDF and CDF of X ~ N(o 1) Y ~ N(2,1),Z ~ N(0,3)

i
POF of %: { (,ﬁ\- = o 308 o pF of X Ay ()= =

Y
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SECTION 4: BASICS IN PROBABILITY THEORY

SECTION 4.4: EXPECTED VALUE



Section 4.4 - Expected value - Introduction

The expected value of a random variable is the weighted average of all of its
, Wwhere the weights are the probabilities that these values occur.

Definition 2: Expected value E(-)

Let X be a random variable. Then, the expected value of X is in the discrete case
and in the continuous case (given the PDF fy) is defined as

gt wegnt
E(X) =) P(X=Rk)- resp.  E(X) = /” lfx(s) -sds. (5)
all a

m The expected value of a random variable sometimes does not exist if, for
example, the random variable is continuous and the weights are "large"
for large values of the random variable (e.g. E(X) = [~ & - sds = o).



Section 4.4 - Expected value - Calculating expected value by hand

Calculate E(X) with PDF fg(a) = 2a” where a € [1,2]
1

Eld= [ £ o 2a
{

23 10{.40\

= ‘30‘
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Section 4.4 - Expected value - Calculation tools

Properties of E(-)

Let ¢ € R be a constant, and let X, Y be random variables for which their
expected values E(X) and E(Y) exists. Then, the following rules hold.

i) E(c) = c;
ii) E(cX) = cE(X);
i) E(X+Y) = E(X) + E(Y).

Example withc =2, E(X) = 1,E(Y) =5

i) €C2) =2
D) E(2a%) = 2800 =2

) E (kY = EM «ENY = 1+5 =6
EX + EY

21 31



SECTION 4: BASICS IN PROBABILITY THEORY

SECTION 4.5: VARIANCE AND COVARIANCE



Section 4.5 - Variance - Introduction

Heuristics‘Hou mucln  volues very obout 4helr meon
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Section 4.5 - Variance - Definition and properties

The variance of a random variable is the expected squared deviation of its
i _———
values to its expected value.

————ee

Definition 3: Variance Var(+)

Let X be a random variable with E(X*) < cc. Then the variance of X is defined as

Var(X) = E[{X — E(X)}?]. (6)
ar(X) == E[{ ()}’]

Sx~Ex3*
Think of Var(X) as “how much X varies about its mean.” We can deduce:
m Var(X) > o.

m Var(X) = 0 = X is constant.
m The variance of X can also be calculated as

Var(X) = E(X*) — (E(X))?. @)

23 31



Section 4.5 — Variance - Calculation tools

Properties of Var(+)

Let c € R be a constant, and let X be a random variable with E(X*) < co. Then
i) Var(c) = o;
i) Var(X + c) = Var(X);
iii) Var(cX) = c?Var(X);
Recall intuition: Var(X) is “how much X varies about its mean.”
Example with ¢ = 5, Var(X) = 1, Var(Y) = 2.
‘(X \IoJ (g\ =9
;\\ qu(K“'g\:\]ﬁf(*B:‘

2) Ve (R = 25 U () =25
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Section 4.5 — Covariance and correlation - Motivation

Expected value and variance help characterize the distribution of a single
random variable X.

Now suppose we want to characterize the relationship between two random
variables X and Y.

m A complete characterization requires assigning probabilities to every
possible pair of values that (X, Y) could be.

m Simpler characterizations are the covariance and correlation of X and Y.

25 31



Section 4.5 — Covariance - Introduction

Heuristics
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Section 4.5 — Covariance - Definition and properties

Definition 4: Covariance Cov(-, )

Let X, Y be random variables with E(X?), E(Y?) < cc. Then the covariance
between X and Y is defined as

Cov(X,Y) = E((X — E(X))(Y — E(Y))). (8)

The covariance between X and Y can also be calculated as

Cov(X,Y) = E(XY) — E(X)E(Y). (9)
m We say X and Y are uncorrelated if Cov(X,Y) = 0. Then X and Y have no
linear relationship, and E(XY) = E(X)E(Y).
Cov(X,Y) > o indicate a positive linear relationship between X and Y.
Cov(X,Y) < o indicate a negative linear relationship between X and Y.
Covariance is symmetric: Cov(X,Y) = Cov(Y, X).

27 31



Section 4.5 - Correlation coefficient

Definition 5: Correlation coefficient p(-, )

Let X, Y be random variables with E(X?), E(Y?) < oo. Then, the correlation
coefficient between X and Y is defined as, provided Var(X) > o and Var(Y) > o,
Cov(X,Y)

var(X)./var(Y) €1 (10)

p(X, Y) =

m p(X,Y) = 0 = between X and Y is no linear relationship.

B p(X,Y) = —1 (1) = all values of X and Y lie on a line with negative
(positive) slope.

m If p(X,Y) is close to -1 (1), there is a strong negative (positive) linear
relationship between X and Y.

28 31



Section 4.5 - Variance and covariance - More calculation tools

Properties of Var(-) and Cov(-, -)
Let ¢ € R be a constant, and let X, Y, Z be random variables with E(X*) < oo,
E(Y?) < o0, and E(Z?) < oo. Then
iv) Var(X) = Cov(X, X)
v) Var(X +Y) = Var(X) + Var(Y) +2Cov(X, Y)
vi) Cov(X,Y) = Cov(Y,X)
vii) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y,Z) and Cov(cX,Z) = cCov(X,Z)

(Property vii says Cov(-, ) is linear in its first argument. Because Cov(,-) is
symmetric, it is also linear in its second argument. Thus we call it bilinear.)

Example with ¢ = 5, Var(X) = 1, Var(Y) = 2, Cov(X,Y) = 1/3.

29 31



SECTION 4: BASICS IN PROBABILITY THEORY

SECTION 4.6: CONDITIONAL PROBABILITY AND INDEPENDENCE



Section 4.6 - Conditional probability - Introduction

Heuristics
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Section 4.6 - Definition and properties

An event is a subset of the sample space Q.

Definition 6: Conditional probability

For events A, B C (, the conditional probability of A given B is defined by

P(ADB)  if p(B
P(A|B) — P(B) | ( ) > 07 (11)
o, if P(B) = o.
m Events A and B are called independent if
P(AN B) = P(A)P(B). (12)

Here knowing B provides no information about A, and vice versa.
m Equivalently, events A and B are independent if P(A|B) = P(A).
m Random variables X and Y are called independent if for all sets A, B holds,
P(X €AY € B) = P(X € A)P(Y € B). (13)
m Independent random variables are uncorrelated.
m But uncorrelated random variables are not necessarily independent!
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